JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 65 No 3 (2020): Journal of the Chilean Chemical Society
Reviews

A REVIEW OF ABACA FIBER-REINFORCED POLYMER COMPOSITES: DIFFERENT MODES OF PREPARATION AND THEIR APPLICATIONS

Bin Jeremiah D. Barba
Chemistry Research Section, Philippine Nuclear Research Institute, Department of Science and Technology, Quezon City 1101, Philippines
Jordan F. Madrid
Chemistry Research Section, Philippine Nuclear Research Institute, Department of Science and Technology, Quezon City 1101, Philippines
David Jr P Penaloza
De La Salle University
Bio
Published September 13, 2020
Keywords
  • polymer composites,
  • abaca,
  • fiber reinforcement,
  • surface modification
How to Cite
Barba, B. J., Madrid, J., & Penaloza, D. J. P. (2020). A REVIEW OF ABACA FIBER-REINFORCED POLYMER COMPOSITES: DIFFERENT MODES OF PREPARATION AND THEIR APPLICATIONS. Journal of the Chilean Chemical Society, 65(3), 4919-4924. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/1503

Abstract

Fiber-reinforced polymer composites have received increased attention due to their environmental friendliness and sustainability, aside from at par - if not better - property enhancement achieved through fiber reinforcement over mineral-based fillers. The purpose of this article is to provide a comprehensive review on the various methods of fiber-based polymer composites preparation as well as their applications, particularly focusing on abaca-reinforced hybrid materials. Among the natural fibers available in the market, abaca fiber has been a major contender in the development of natural fiber composites. It has a great potential to be a renewable fiber source for industrial and technological applications owing to its inherent high mechanical strength, durability, flexibility and long fiber length. Impacts of different treatment strategies of abaca-based composites preparation resulting in property enhancements over bare polymer counterparts and that of synthetic fibers are discussed. Being eco-friendly and naturally sustainable, abaca fiber-reinforced composites can also exhibit better strength without substantial weight gain – characteristics that have been exploited in various commercial and technological uses. How these enhanced properties of the resulting composites had led in a wide range of applications such as in the automobile and construction industries and other fields had been included as well.

15031.png

References

  1. D.P. Penaloza, Philipp. J. Sci., 148, 827 (2019).
  2. D. P. Penaloza, D.J. Sandberg, M.V. Giotto, T.A.P. Seery, Polym. Eng. Sci., 55, 2349 (2015).
  3. A. Okada, A. Usuki, A, Macromol. Mater. Eng., 291, 1449 (2006).
  4. E.P. Giannelis, Appl. Organomet. Chem., 12, 675 (1998).
  5. K. Hill, B. Swiecki, J. Cregger, Center for Automotive (2012), https://www.cargroup.org/wp-content/uploads/2017/02/The-Bio_Based-Materials-Automotive-Value-Chain.pdf
  6. G. Se‘be, N.S. Cetin, C.A.S. Hill, M. Hughes, Appl Compos. Mater., 7, 341 (2000).
  7. S.V. Joshi, L.T. Drzal, A.K. Mohanty, S. Arora, Compos. Part A Appl. Sci. Manuf., 35, 371 (2004).
  8. O. Güven, S.N. Monteiro, E.A.B. Moura, J.W. Drelich, Polym. Rev., 56, 702 (2016).
  9. T. Johnson, History of composites (2018), https://www.thoughtco.com/history-of-composites-820404
  10. F. Ahmad, H.S. Choi, M.K. Park, Macromol. Mater. Eng., 300, 10 (2015).
  11. J. Holbery, D. Houston, JOM, 58, 80 (2006).
  12. L. Mohammed, M.N.M. Ansari, G. Pua, M. Jawaid, M.S. Islam, Int. J. Polym., 2015, 1 (2015).
  13. A. Wagenführ, Lightweight Design worldwide, 10, 3 (2017).
  14. J. Njuguna, P. Wambua, K. Pielichowski and K. Kayvantash, In Cellulose fibers: bio-and nano-polymer composites, edited by S. Kalia, B.S. Kaith, I. Kaur, Springer Nature, pp. 661-700 (2011), https://link.springer.com/chapter/10.1007/978-3-642-17370-7_23
  15. L.J. Bingham, Automotive Industries 180, 83 (2000).
  16. F.A. Mirza, A.M. Afsar, B.S. Kim, J.I. Song, Composites Research, 22, 41 (2009).
  17. A.G. Daimler, New Mercedes-Benz A-class: Environmental Certificate for the A-class (2018), https://media.daimler.com/marsMediaSite/en/instance/ko/New-Mercedes-Benz-A-Class-Environmental-Certificate-for-the-A-Class.xhtml?oid=40866452
  18. R. Fangueiro and S. Rana, Green composites for advanced technical applications. In 5th International Conference on Innovative Natural Fibre Composites for Industrial Applications. Rome, Italy (2015), https://www.researchgate.net/publication/285578124_Green_Composites_for_Advanced_Technical_Applications
  19. M. Ho, H. Wang, J.H. Lee, C. Ho, K. Lau, J. Leng, D. Hui, Compos. Part B-Eng., 43, 3549 (2012).
  20. H. Venkatasubramanian, C. Chaithanyan, S. Raghuraman, and T. Panneerselvam, Int. J. of Adv. Res. in Sci. Eng. Tech., 1, 40 (2014).
  21. G. Suresh, L.S. Jayakumari, G. Suresh, L.S.Jayakumari, Polímeros, 25, 49 (2015).
  22. V. Tserki, N.E. Zafeiropoulos, F. Simon, and C. Panayiotou, Compos. Part A Appl. Sci. Manuf., 36, 1110 (2005).
  23. A. Célino, S. Fréour, F. Jacquemin, P. Casari, Front. Chem., 1, 43 (2013).
  24. S. Ochi, Compos. Part A Appl. Sci. Manuf., 37, 1879 (2006).
  25. K. Vijayalakshmi, C.Y.K. Neeraja, A. Kavitha, J. Hayavadana, Transactions on Engineering and Sciences, 2, 16 (2014).
  26. R.B. Armecin, F.G. Sinon and L.O. Moreno, In Biomass and Bioenergy, edited by K.R.Hakeem, M. Jawaid and U. Rashid, Springer Nature, pp. 108-116 (2014), https://www.springer.com/gp/book/9783319075778
  27. R. Punyamurthy, D. Sampathkumar, B. Bennehalli, C.V. Srinivasa, Chem. Sci. Trans., 2, 413 (2013).
  28. PhilFIDA, Final technical report: Improvement of fiber extraction and identification of higher yielding varieties. Manila. (2009), http://www.philfida.da.gov.ph/images/Publications/abacasustainabilitymanual/ASM.pdf
  29. R. Sun, J.M. Fang, A. Goodwin, J.M. Lawther, and A.J. Bolton, J. Agric. Food Chem., 46, 2817 (1998).
  30. K. Liu, H. Takagi, Z. Yang, Compos. Part A Appl. Sci. Manuf., 45, 14 (2013).
  31. B. Madsen, E.K. Gamstedt, Adv. Mater. Sci. Eng., 2013, 564346 (2013).
  32. M.A. Paglicawan, B.A. Basilia, B.S. Kim, Composites Research, 26, 165 (2013).
  33. F. Göltenboth, W. Mühlbauer, Abacá - cultivation, extraction and processing. In Industrial Applications of Natural Fibres (pp. 163–179). Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470660324.ch7
  34. A.K. Bledzki, A.A. Mamun, M. Lucka-Gabor, V.S. Gutowski, Express Polym. Lett., 2, 413 (2008).
  35. L.O. Moreno, Philipp. J. Crop Sci., 26, 21 (2001).
  36. B.C. Tobias, Tomorrow’s Materials: Today, 34, 211 (1989).
  37. B.C. Tobias, In International SAMPE Symposium and Exhibition, 35 th, Anaheim, CA, pp. 970–978 (1990)
  38. M. Shibata, K. Takachiyo, K. Ozawa, R. Yosomiya, H. Takeishi, J. Appl. Polym., 85, 129 (2002).
  39. M. Shibata, R. Yosomiya, N. Ohta, A. Sakamoto, H. Takeishi, Polym. Polym. Compos., 11, 359 (2003).
  40. DaimlerChrysler. Annual Report. Stuttgart, Germany (2004), https://www.daimler.com/documents/investors/berichte/geschaeftsberichte/daimlerchrysler/daimler-ir-annualreport-2004.pdf
  41. A.K. Bledzki, P. Franciszczak, Z. Osman, M. Elbadawi, Indus. Crop. Prod., 70, 91 (2015).
  42. R. Greiner, T. Schloeser, Rovings comprising Musaceae or banana plant fibers, used to reinforce composite automobile components, have limited contamination by processing aids, DE10349110B3 (2004). https://patents.google.com/patent/DE10349110B3/en
  43. A.K. Bledzki, A. Mamun, O. Faruk, Express Polym. Lett., 1, 755 (2007).
  44. J. Gironès, J.P. Lopez, F. Vilaseca, P.J. Herrera-Franco, P. Mutje, Compos. Sci. Technol., 71, 122 (2011).
  45. M.R. Rahman, M.M. Huque, M.N. Islam, M. Hasan, Compos. Part A Appl. Sci. Manuf., 40, 511( 2009).
  46. A.K. Bledzki, A.A. Mamun, A. Jaszkiewicz, K. Erdmann, Compos. Sci. Technol., 70, 854 (2010).
  47. M. Cai, H. Takagi, A.N. Nakagaito, Y. Li, G.I.N. Waterhouse, Compos. Part A Appl. Sci. Manuf., 90, 589 (2016).
  48. T. Tumolva, M. Kubouchi, S. Aoki, T. Sakai, In Proceedings of the 18th International Conference on Composites Materials, pp. 21–26 (2011). https://pdfs.semanticscholar.org/bc92/6868e47edd8f121bdfca500b737ee11a0ac2.pdf
  49. R.R. Niranjan, S. Junaid Kokan, R. Sathya Narayanan, S. Rajesh, V.M. Manickavasagam, B.V. Ramnath, Adv. Mater. Res., 718-720, 63 (2013).
  50. A.S. Suvarna, A. Katagi, J. Pasanna, S. Kumar, P.V. Badyankal, S.K. Vasudeva, Mat. Sci. Res. India, 12, 54 (2015).
  51. A.K. Bledzki, A. Jaszkiewicz, Compos. Sci. Technol., 70, 1687 (2010).
  52. E.H. Agung, S.M. Sapuan, M.M. Hamdan, H. Zaman, U. Mustofa, Int. J. Phys. Sci., 6, 2100 (2011).
  53. M.A. Paglicawan, B.S. Kim, B.A. Basilia, C.S. Emolaga, D.D. Marasigan, P.E.C. Maglalang, Int. J. of Precis. Eng. and Manuf.-Green Tech., 1, 241 (2014).
  54. B.V. Ramnath, S.J. Kokan, R.N. Raja, R. Sathyanarayanan, C. Elanchezhian, A.R. Prasad, V.M. Manickavasagam, Mater. Des., 51, 357 (2013).
  55. T.A. Dankovich, Y.L. Hsieh, Cellulose, 14, 469 (2007).
  56. X. Li, L.G. Tabil, S. Panigrahi, J. Polym. Environ., 15, 25 (2007).
  57. V.S.D. Mesias, A.B.S. Agu, P.J.L. Benablo, C.H. Chen, D.P. Penaloza, J. Ecol. Eng., 20, 1 (2019).
  58. B.S.C. Siy, J.A.X.C. Tan, K.P. Viron, N.J.B. Sajor, G.N.C. Santos and D.P. Penaloza, Cellulose Chem. Technol., 54, 365 (2020).
  59. S. Haig Zeronian, H. Kawabata, K.W. Alger, Text. Res. J., 60, 179 (1990).
  60. M.A. Semsarzadeh, Polym. Compos., 7, 23 (1986).
  61. P.K. Ray, A.C. Chakravarty, S.B. Bandyopadhaya, J. Appl. Polym. Sci., 20, 1765 (1976).
  62. J.Y.Y. Heng, D.F. Pearse, F. Thielmann, T. Lampke and A. Bismarck, Compos. Interfaces, 14, 581 (2007).
  63. M.N. Belgacem, P. Bataille, S. Sapieha, J. Appl. Polym. Sci., 53(4), 379 (1994).
  64. I. Sakata, M. Morita, N. Tsuruta, K. Morita, J. Appl. Polym. Sci., 49, 1251 (1993).
  65. M. Ragoubi, D. Bienaimé, S. Molina, B. George, A. Merlin, Ind Crop Prod, 31, 344 (2010).
  66. Q. Wang, A. Ait-Kadi, S. Kaliaguine, J. Appl. Polym. Sci., 45, 1023 (1992).
  67. J. Gassan, V.S. Gutowski, Compos. Sci. Technol., 60, 2857 (2000).
  68. D.P. Penaloza, T.A.P. Seery, Mater. Res., 22, e201800192 (2019).
  69. S.C.O. Ugbolue, Text. Prog., 20, 1 (1990).
  70. M.M. Kabir, H. Wang, K.T. Lau, F. Cardona, Compos. Part B-Eng., 43, 2883 (2012).
  71. Y. Xu, S. Kawata, K. Hosoi, T. Kawai, S. Kuroda, S. Express Polym. Lett., 3, 657 (2009).
  72. S. Mishra, J.B. Naik, Y.P. Patil, Compos. Sci. Technol., 60, 1729 (2000).
  73. S. Kalia, B.S. Kaith, I. Kaur, Polym. Eng. Sci., 49, 1253 (2009).
  74. A. Hebeish, T. J. Guthrie, The chemistry and technology of cellulosic copolymers, Springer-Verlag Berlin Heidelberg (2012), https://www.springer.com/gp/book/9783540101642
  75. D. Roy, M. Semsarilar, J.T. Guthrie, S. Perrier, Chem. Soc. Rev., 38, 2046 (2009).
  76. V.H. Pino-Ramos, A. Ramos-Ballesteros, F. López-Saucedo, J.E. López-Barriguete, G.H.C. Varca, E. Bucio, Top. Curr. Chem. (Z) 374, 63 (2016).
  77. Y. Bhardwaj, M. Tamada, Y.C. Nho, M. Nasef, O. Guven, IAEA: Vienna, (2014), http://www-naweb.iaea.org/napc/iachem/working_materials/Graftingprotocol.pdf
  78. M.M. Hassan, M.H. Wagner, Rev. Adhes. Adhes., 4, 1 (2016).
  79. A. Rudin, P. Choi, A. Rudin, P. Choi, The Elements of Polymer Science & Engineering, 341 (2013).
  80. N.H. Mohamed, M. Tamada, Y. Ueki, N. Seko. Radiat. Phys. Chem., 82, 63 (2013).
  81. J. Sharif, S.F. Mohamad, N.A.F. Othman, N.A. Bakaruddin, H.N. Osman, O. Güven, Radiat. Phys. Chem., 91, 125 (2013).
  82. J.F. Madrid, G.M. Nuesca, L.V. Abad, Radiat. Phys. Chem., 85, 182 (2013).
  83. F. Khan, Macromol. Biosci., 5, 78 (2005).
  84. A.K. Mohanty, S. Patnaik, B.C. Singh, M. Misra, J. Appl. Polym. Sci., 37, 1171 (1989).
  85. V.K. Thakur, A.S. Singha, B.N. Misra, J. Appl. Polym. Sci.,122, 532 (2011).
  86. A.M. El-Naggar, M.B. El-Hosamy, A.H. Zahran, M.H. Zondy, Am. Dyestuff Rep, 81, 40 (1992).
  87. J.F. Madrid, Y. Ueki, N. Seko, Radiat. Phys. Chem., 90, 104 (2013).
  88. J.F. Madrid, P.J.E. Cabalar, L.V.Abad, J. Nat. Fibers, 15, 625 (2018).
  89. W. Machnowski, B. Gutarowska, J. Perkowski, H. Wrzosek. Text. Res. J., 83, 44 (2013).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP