JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 62 No 1 (2017): Journal of the Chilean Chemical Society
Original Research Papers

THE INFLUENCES OF POPLAR INNER AND OUTER BARK CONTENT ON MECHANICAL PROPERTIES OF WOOD/POLYPROPYLENE COMPOSITES

Seyyed Khalil Hosseinihashemi
Department of Wood Science and Paper Technology, Karaj Branch, Islamic Azad University
Mohammad-Hadi Shamspour
Department of Wood Science and Paper Technology, Karaj Branch, Islamic Azad University
Vahidreza Safdari
Department of Wood Science and Paper Technology, Karaj Branch, Islamic Azad University
Shademan Pourmousa
Department of Wood Science and Paper Technology, Karaj Branch, Islamic Azad University
Nadir Ayrilmis
Department of Wood Mechanics and Technology, Forestry Faculty, Istanbul University
Published June 5, 2017
Keywords
  • Wood-plastic composite,
  • Inner and outer bark flour (fiber),
  • Wood flour (fiber),
  • Mechanical properties,
  • Poplar wood
How to Cite
Hosseinihashemi, S. K., Shamspour, M.-H., Safdari, V., Pourmousa, S., & Ayrilmis, N. (2017). THE INFLUENCES OF POPLAR INNER AND OUTER BARK CONTENT ON MECHANICAL PROPERTIES OF WOOD/POLYPROPYLENE COMPOSITES. Journal of the Chilean Chemical Society, 62(1). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/150

Abstract

This study evaluated the individual and interaction effects of inner bark flour (IBF), outer bark flour (OBF), wood flour (WF), and blending of IBF, OBF, and WF content of poplar tree on the morphology and mechanical properties of wood-plastic composites (WPCs). The IBF, OBF, and WF with 2 wt% maleic anhydride-grafted polypropylene (MAPP) and polypropylene were compounded into the pellets using a counter-rotating twin-screw extruder. Test specimens were prepared by injection molding machine. The results indicated that the WF alone significantly (P<0.05) increased the flexural strength, flexural modulus, and tensile strength. The composites made with IBF/WF exhibited higher tensile modulus compared to those made with WF alone and IBF/OBF alone. Moreover, the results showed that the IBF/OBF alone increased the notched impact strength compared to all of reinforced composites. The neat polypropylene had higher notched impact strength than the other reinforced composites (P<0.05). 

References

  1. P. Hakkila, Structure and properties of wood and woody biomass, Kellomaki, S. (Ed.), Fapet Oy, Jyvaskyla, Finland (1998).
  2. G. A. Smook, Handbook for Pulp and Paper Technologists, 2nd edition, Angus Wilde Publications Inc., Vancouver, Canada (1992).
  3. K. Wolfe, A. Hitchcock, Tree Bark, http://ext100.wsu.edu/skagit/wp-content/uploads/sites/5/2014/03/Learn-to-Identify-Trees-by-Their-Bark. pdf (2015).
  4. J. M. Harkin, J. M. Rowe, Bark and its possible uses, USDA For. Serv. For. Prod. Lab. Res. Note FPl-091 (1971).
  5. B. Klasnja, S. Kopitovic, S. Orlovic, J. Biomass and Bioenergy, 23, 427- 432 (2002).
  6. M. C. N. Yemele, A. Koubaa, P. Blanchet, A. Cloutier, M. Wolcott, J. Forest Prod, 58, 48-56 (2008).
  7. P. Blanchet, A. Cloutier, B. Riedl, Wood Sci. and Technol, 34, 11-9 (2000).
  8. C. Xing, J. Deng, S. Y. Zhang, B. Riedl, A. Cloutier, J. Forest Prod, 56, 64-69 (2006).
  9. D. P. Harper, T. L. Eberhardt, 10th International Conference on Wood & Biofiber Plastic Composites. Madison, WI: Forest Prod. Soc, 248-252 (2010).
  10. M. C. N. Yemele, A. Koubaa, A. Cloutier, P. Soulounganga, A. Koubaa, Composites Part A: J. Appl. Sci. and Manufact, 41, 131-137 (2010).
  11. O. Faruk, A. K. Bledzki, Wood Plastic Composite: Present and Future, John Wiley & Sons, Inc. University of Toronto, Toronto,. ON, Canada. (2012).
  12. N. M. Stark, R. E. Rowlands, J. Wood Fiber Sci, 35, 167-74 (2003).
  13. F. Basiji, V. Safdari, A. Nourbakhsh, S. Pilla, J. Turk. Agric. For, 34, 191- 196 (2010).
  14. R. M. Rowell, A. R. Sanadi, D. F. Caulfield, E. Jacobson, In: Lignocellulosic-Plastic Composites, A. L. Leão, F. X. Carvalho, E. Frollini, (Eds.), São Paulo, USP & UNESP, 23-51 (1997).
  15. V. Safdari, H. Khodadadi, S. K. Hosseinihashemi, E. Ganjian, BioRes, 6, 5180-5192 (2011).
  16. S. Kazemi Najafi, A. Azimi Delarestaghi, Iranian J. Wood and Paper Sci. Res, 26, 811-823 (2012).
  17. A. K. Bledzki, J. Gassan, S. Theis, J. Mech. Compos. Mat, 34, 563-568 (1998).
  18. H. Bouafif, A. Koubaa, P. Perre, A. Cloutier, Composites Part A: J. Appl. Sci. Manufact, 40, 1975-1981 (2009).
  19. J. Z. Lu, Q. Wu, I. I. Negulescu, J. Appl. Polym. Sci, 96, 93-102 (2005).
  20. X. Wang, Q. Wang, G. J. Xu, L. S. Xu, Wood Sci. and Technol, 45, 5-13 (1999).
  21. N. S. Çetin, N. Özmen, N. Narlıoğlu, V. Çavuş, Usak Univ., J. Mat. Sci, 1, 23-32 (2014).
  22. S. Migneault, A. Koubaa, F. Erchiqui, A. Chaala, K. Englund, M. P. Wolcott, Composites Part A: J. Appl. Sci. Manufact, 40, 80-85 (2009).
  23. H. Saputra, J. Simonsen, K. Li, Compos. Inter, 11, 515-524 (2004).
  24. K. E. Gamstedt, P. Nygard, M. Lindström, In: Proc. 3e symposium international sur les composites bois polymères, Bordeaux, France, 26-27 (2007).
  25. H. Bouafif, A. Koubaa, P. Perre, A. Cloutier, B. Riedl, J. Wood Chem. and Technol, 28, 296-315 (2008).
  26. N. M. Stark, M. J. Berger, 4th Intl. Conf. Wood Fiber-plastic Compos., Madison, (1997).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP