JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 65 No 3 (2020): Journal of the Chilean Chemical Society
Original Research Papers

SYNTHESIS, CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A NEW DERIVATIVE OF LEVOFLOXACIN

Aura Rusu
Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Târgu Mureş, Romania
Bio
Silvia Imre
Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Târgu Mureş, Romania
Bio
Anca Delia Mare
Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Târgu Mureş, Romania
Bio
Ioana-Andreea Lungu
George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Târgu Mureş, Romania
Bio
Giorgiana-Andreea Pascu
Gedeon Richter Romania
Valentina Uivarosi
Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
Bio
Published September 9, 2020
Keywords
  • antibacterial,
  • antibiotic resistance,
  • levofloxacin,
  • silver triflate,
  • triflate

Abstract

A new levofloxacin derivative using silver triflate with antibacterial activity was synthesized and characterized. The new compound has been physicochemically characterized through elemental analysis, spectroscopic and thermal methods. All correlated experimental data suggested that the levofloxacin triflate was obtained. The antibacterial activity of the new compound was tested against six Gram-positive and Gram-negative bacteria. In vitro, the new compound had similar activity to levofloxacin against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and very closed to the minimum inhibitory concentration values of levofloxacin against Staphylococcus aureus MRSA, Enterococcus faecalis, and Pseudomonas aeruginosa.

captura_1489.PNG

References

  1. S.E. Edwards, C.M. Morel, Expert. Rev. Pharmacoecon. Outcomes Res. 19, 685, (2019)
  2. D. Buckland, Prescriber. 28, 12, (2017)
  3. Tuberculosis. 88, 2, (2008)
  4. G.J. Noel, Clinical Medicine. Therapeutics. 1, 433, (2009)
  5. A.M. Noreddin, W.F. Elkhatib, K.M. Cunnion and G.G. Zhanel, Drug. Healthc. Patient Saf. 3, 59, (2011)
  6. L.S. Redgrave, S.B. Sutton, M.A. Webber, L.J. Piddock, Trends Microbiol. 22, 438, (2014)
  7. G.A.R.Y. Suaifan, A.A.M. Mohammed, Bioorganic & Medicinal Chemistry. 27, 3005, (2019)
  8. H.A.A. Ezelarab, S.H. Abbas, H.A. Hassan, G.E.-D.A. Abuo-Rahma, Arch. Pharm. (Weinheim). 351, e1800141, (2018)
  9. A. Rusu, G. Hancu, G. Tóth, S. Vancea, F. Toma, A.D. Mare, A. Man, G.M. Niţulescu, V. Uivarosi, J. Mol. Struct. 1123, 384, (2016)
  10. Clinical and Laboratory Standards Institute, M100-S23 Performance Standards for Antimicrobial Susceptibility Testing Twenty-Third Informational Supplement, Wayne, PA, USA: Clinical and Laboratory Standards Institute, 2013.
  11. A. Rusu, G. Hancu, F. Toma, A.D. Mare, A. Man, B.S. Velescu, V. Uivarosi, Farmacia. 64, 922, (2016)
  12. B. Quillian, A.E. Fields, D. Chace, A.M. Vickery, M. Sharma, D. Zurwell, J.G. Bazemore, L. Phan, D. Thomas, C.W. Padgett, Inorg. Chim. Acta. 489, 224, (2019)
  13. W.-C. Pan, M.-M. Zhang, J.-Q. Liu, X.-S. Wang, Syntesis. 51, 3101, (2019)
  14. P.J. Malinowski, Z. Mazej, M. Derzsi, Z. Jagličić, J. Szydłowska, T. Gilewski, W. Grochala, CrystEngComm. 13, 6871, (2011)
  15. V.L. Dorofeev, A.P. Arzamastsev, O.M. Veselova, Pharm. Chem. J. 38, 333, (2004)
  16. PubChem Database, National Center for Biotechnology Information. https://pubchem.ncbi.nlm.nih.gov/compound/Trifluoromethanesulfonic-acid. [Accessed 27 05 2020]
  17. Sigma Aldrich Catalog, Merck KgaA. https://www.sigmaaldrich.com/catalog/product/aldrich/176435?lang=en&region=RO [Accessed 27 05 2020]
  18. W. Geary, Coord. Chem. Rev. 7, 81, (1971)
  19. I. Ali, W.A. Wani, K. Saleem, Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 43, 1162, (2013)
  20. V.L. Dorofeev, Pharm. Chem. J. 38, 693, (2004)
  21. P.C. Huber, G.P. Reis, M.C.K. Amstalden, M. Lancellotti, W. P. Almeida, Polyhedron. 57, 14, (2013)
  22. H.-R. Park, T. H. Kim, K.-M. Bark, Eur. J. Med. Chem. 37, 443, (2002)
  23. D. H. Johnston, D. F. Shriver, Inorganic Chemistry. 32, 1045, (1993)
  24. P. Larkin. IR and Raman Spectroscopy Principles and Spectral Interpretation, Elservier, Amsterdam, 2011.
  25. M. Refat, Spectrochim. Acta A Mol. Biomol. Spectrosc. 68, 1393, (2007)
  26. J. Coates in Interpretation of infrared spectra, a practical approach, R.A. Meyers, ed. John Wiley& Sons Ltd., Chichester, 2000 ; pp. 10815
  27. A.S. Sadeek, J. Mol. Struct. 753, 1 (2005)
  28. I. Sousa, V. Claro, J.L. Pereira, A.L. Amaral, L. Cunha-Silva, B.d. Castro, M.J. Feio, E. Pereira, P. Gameiro, J. Inorg. Biochem. 110, 64, (2012)
  29. K. Nakamuto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, Wiley, Hoboken, 2009
  30. M.J. O'Neil in An Encyclopedia of Chemicals, Drugs, and Biologicals, M.J. O’Neil, P.E. Heckelman, C.B. Koch, K.J. Roman eds. John Wiley & Sons, Hoboken, 2006 ; pp. 1171.
  31. E.D. Márquez, E.V. Santiago, S.H. López, Physical Chemistry. 9, 1, (2019)

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP