JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 65 No 4 (2020): Journal of the Chilean Chemical Society
Original Research Papers

PHOTOCATALYTIC DEGRADATION/ADSORPTION OF CARCINOGENIC AZO DYE DISPERSE RED 176.1 BY NANOCAGE Cu2O AS A DUAL FUNCTION CATALYST ON THE VISIBLE‑LIGHT

Reza Fazaeli
Islamic Azad University-South Tehran Branch
Published November 15, 2020
Keywords
  • Band gap,
  • carcinogenic azo dye Disperse Red 176.1,
  • Cu2O,
  • Equilibrium Isotherms and Kinetics,
  • Photocatalytic degradation
How to Cite
Fazaeli, R. (2020). PHOTOCATALYTIC DEGRADATION/ADSORPTION OF CARCINOGENIC AZO DYE DISPERSE RED 176.1 BY NANOCAGE Cu2O AS A DUAL FUNCTION CATALYST ON THE VISIBLE‑LIGHT. Journal of the Chilean Chemical Society, 65(4), 5023-5026. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/1473

Abstract

Refining and disposal of wastewater is an important concern of textile industries due to the presence of carcinogenic azo dyes. The monoazo dye Disperse Red 167.1 (DR167.1) is used in dyeing polyester and cotton fibers. In this study, Cage Cu2O particles was synthesized by using non-toxic and inexpensive materials as a bi-functional material that can mineralize this pollutant under light irradiation and dark media. The samples were characterized by FESEM, XRD, BET / BJH, FTIR, and DRS techniques. The crystallite size was almost 24.3 nm by the Williamson-Hall. Direct band gap energy was equal to 2.08 eV by Kubelka-Munk. It revealed a greater photocatalytic performance in visible light than UV-C and it absorbed 49% of the dye within 10 minutes in the darkness. The oxidation results indicated that at pH equal to 6.44 without the presence of H2O2, 0.75 mg.L-1 of cage Cu2O and of 94 mg.L-1 dye concentration yielded 91 % removal and mineralization  during 10 min. Removal under the visible light irradiation increased to 93% upon increasing the time to 40 min. as dye concentration rose from 94 to 340 mg.L-1, with a slight reduction in the efficiency of the photocatalytic degradation process, the efficiency was obtained as 91%. Koble Corrigan model was found as the best isotherm model. Reaction kinetics followed the pseudo-second order model. Overall, due to its absorption and removal of dyes in a short time, it can be a good candidate for textile wastewater treatment.

1473-Graphical_Abstract-5204-1-11-20200510.jpg

References

  1. D. Zhang. Acta Chimica Slovaca 6(1), 141-149, ( 2013). DOI: 10.2478/acs-2013-0022
  2. Z. Zeng, Y.Yan, , J. Chen, , P. Zan, , Q. Tian, P. Chen. Adv. Funct. Mater, 29(2), 1806500,
  3. ( 2019). DOI: 10.1002/adfm.201806500
  4. Mohamed. R. M, Aazam. E. S. Appl Catal A Gen, 480, 100-107,(2014). DOI: 10.1016/j.apcata.2014.04.039
  5. H. D. Aghdam, H. Azadi, M. Esmaeilzadeh, S. M. Bellah, and R. Malekfar. Optical Materials, 91, 433-438, ( 2019). DOI: 10.1016/j.optmat.2019.03.027
  6. G.R. Surikanti, A.K. Bandarapu, M.V. Sunkara, ChemistrySelect, 4(8), 2249-2257,(2019). DOI: 10.1002/slct.201900003
  7. G. Wang, R. van den Berg, C. de Mello Donega, K.P. de Jong, P.E. de Jongh, P. E. Appl Catal,B, 192, 199-207, (2016). DOI: 10.1021/jp111778g
  8. Y. Jiang, H.Yuan, H. Chen, ChemPhysChem, 17(1), 630-637,(2015). DOI: 10.1039/C4CP03631J
  9. M. Iqbal, Y. Wang, H. Hu, M. He, A.H. Shah, L. Lin, P. Li, K. Shao, A.R. Woldu, T. He. Appl Surf Sci, 443, 209-216,(2018). DOI: 10.1016/j.apsusc.2018.02.162
  10. B. White, M. Yin, A. Hall, D. Le, S. Stolbov, T. Rahman, N. Turro, S. O'Brien. Nano let, 6(9), 2095-2098, (2006). DOI: 10.1021/nl061457v
  11. B. Wang, W. Zhang, Z. Zhang, R. Li, Y. Wu, Z. Hu, X. Wu, C. Guo, G. Cheng, R. Zheng. RSC advances, 6(105), 103700-103706,( 2016). DOI: 10.1039/C6RA22474A
  12. Q. Guo, Y. Li, W. Zeng. Physica E Low Dimens Syst Nanostruct, 114, 113564,(2019). DOI: 10.1016/j.physe.2019.113564
  13. R. Ji, W. Sun, Y. Chu. ChemPhysChem, 14(17), 3971-3976,(2013). DOI: 10.1002/cphc.201300735
  14. T. Aditya, J. Jana, N.K. Singh, A. Pal, T. Pal. ACS omega, 2(5), 1968-1984, (2017). DOI: 10.1021/acsomega.6b00447
  15. C.H. Kuo, C.H. Chen, M.H. Huang. Adv Funct Mater, 17(18), 3773-3780,(2007). DOI: 10.1002/adfm.200700356
  16. F. Plascencia-Hernández, A.L. Luna, C. Colbeau-Justin, P. Santiago, Garcia-Rocha, M., Valverde-Aguilar, G. M. A.Valenzuela. J. Saudi Chem. Soc, 23(8), 1016-1023,( 2019). DOI: 10.1016/j.jscs.2019.05.007
  17. R. Yang, X. Lu, X. Huang, Z. Chen, X. Zhang, M. Xu, Q. Song, L. Zhu. Appl Catal B, 170, 225-232,( 2015). DOI: 10.1016/j.apcatb.2015.01.046
  18. K. Chanda, S. Rej, M. H. Huang. Chem: Eur. J, 19(47), 16036-16043,( 2013). DOI: 10.1002/chem.201302065
  19. Q. Hua, T. Cao, X. K. Gu, J. Lu, Z. Jiang, X. Pan, L. Luo, W.X. Li, W. Huang. Angew Chem Int Ed Engl, 53(19), 4856-4861,( 2014). DOI: 10.1002/anie.201402374
  20. H. Zhang, Q. Zhu, Y. Zhang, Y. Wang, L. Zhao, B. Yu. Adv Funct Mater, 17(15), 2766-2771,( 2007). DOI: 10.1002/adfm.200601146
  21. Y. Xiong, B. Wiley, J. Chen, Z. Y. Li, Y. Yin, Y. Xia. Angew Chem Int Ed Engl, 44(48), 7913-7917,( 2005). DOI: 10.1002/anie.200502722
  22. D. F. Zhang, H. Zhang, L. Guo, K. Zheng, X. D. Han, Z. Zhang. J Mater Chem, 19(29), 5220-5225,( 2009). DOI: 10.1039/b816349a
  23. Z. Gao, B. Yao, T. Xu . Techno, 1:1-1,( 2019). DOI: 10.1080/09593330.2019.1670268
  24. W. Janusz, A. GAŁGAN, and M. RESZKA. PHYSICOCHEM PROBL MI, 40, 161-174,( 2006)
  25. N. I. C. K. Serpone, D. A. R. R. E. N. Lawless, R. Khairutdinov, E. Pelizzetti . J Phys Chem, 99(45), 16655-16661,(1995). DOI: 10.1021/j100045a027
  26. N. Daneshvar, D. Salari, and A. R. Khataee. J. Phys. Chem, 162(2-3), 317-322,(2004). DOI: 10.1016/S1010-6030(03)00378-2
  27. T. Sauer, G. C. Neto, H. J. Jose, R. F. P. M. Moreira. Photobiol. A, 149(1-3), 147-154,( 2002). DOI: 10.1016/S1010-6030(02)00015-1
  28. M. Kosmulsk. Adv Colloid Interface Sci, 152(1-2), 14-25,( 2009). DOI: 10.1016/j.cis.2009.08.003
  29. M. Kosmulsk, CRC pressm(145), 2009
  30. I. K. Konstantinou, T. A. Albanis. Appl Catal B, 49(1), 1-14,( 2004). DOI: 10.1016/j.apcatb.2003.11.010
  31. E. Bizani, K. Fytianos, I. Poulios, V. Tsiridis. J. Hazard. Mater, 10;136(1):85-94,( 2006). DOI: 10.1016/j.jhazmat.2005.11.017
  32. K. Tanaka, K. Padermpole, T. Hisanaga . Water Res, 34(1), 327-333,(2000). DOI: 10.1016/S0043-1354(99)00093-7
  33. C. Zhu, L. Wang, L. Kong, X. Yang, L. Wang, S. Zheng, H. Zong. Chemosphere, 41(3), 303-309,( 2000). DOI: 10.1016/s0045-6535(99)00487-7
  34. C. Hu, C. Y. Jimmy, Z. Hao, P. K. Wong. Appl Catal B, 46(1), 35-47,( 2003). DOI: 10.1016/S0926-3373(03)00139-5
  35. S. Maensiri, C. Masingboon, V. Promarak, and S. Seraphin. Opt Mater (Amst), 29(12), 1700-1705,( 2007). DOI: 10.1016/j.optmat.2006.09.011
  36. D. Bhatia, R. Kanwar, and J. Singh. dspace.lpu.in, 2018. DOI: 10.1016/j.jhazmat.2005.11.017
  37. F. Zhang, G. Dong , M. Wang, Y. Zeng, C. Wang. Appl. Surf. Sci,30,444,559-68,( 2018). DOI: 10.1016/j.apsusc.2018.03.087
  38. S. Karthikeyan, S. Kumar, LJ. Durndell, MA. Isaacs, CM. Parlett, B. Coulson, RE. Douthwaite, Z. Jiang, K. Wilson, AF. Lee. ChemCatChem, 21,10(16),3554-63,( 2018). DOI:10.1002/cctc.201800439
  39. R. Saadi, Z. Saadi, R. Fazaeli, and N. E. Fard. Korean J Chem Eng, 32(5), 787-799,(2015). DOI: 10.1007/s11814-015-0053-7
  40. J. F. Porter, G. McKay, and K. H. Choy. Chem Eng Sci, 54(24), 5863-5885,( 1999). DOI: 10.1016/S0009-2509(99)00178-5
  41. L. Nassaji-Jahromi, R. Fazaeli, R. Behjatmanesh-Ardakani, M.Taghdiri. J. Photochem. Photobiol. A, 392, 112425,(2020). DOI: 10.1016/j.jphotochem.2020.112425
  42. A. Seidel, D. Gelbin. Chem Eng Sci, 43(1), 79-88,( 1988). DOI: 10.1016/0009-2509(88)87128-8
  43. S. Agarwal, I. Tyagi, V. K. Gupta, F. Golbaz, A. N. Golikand, O. Moradi. J Mol Liq, 218, 494-498,( 2016). DOI: 10.1016/j.molliq.2016.02.040
  44. R. Bazargan-Lari, H. R. Zafarani, M. E. Bahrololoom, and A. Nemati. J Taiwan Inst Chem Eng, 45(4), 1642-1648,( 2014). DOI: 10.1016/j.jtice.2013.11.009
  45. B. H. Hameed. J Hazard Mater, 162(2-3), 939-944,( 2009). DOI: 10.1016/S0032-9592(02)00239-X
  46. A. Khaled, A. El Nemr, A. El-Sikaily, O. Abdelwahab. Desalination, 238(1-3), 210-232,(2009). DOI: 10.1016/j.desal.2008.02.014
  47. M. Özacar, İ. A. Şengil, H. Türkmenler. Chem Eng J, 143(1-3), 32-42,( 2008). DOI: 10.1016/j.cej.2007.12.005
  48. A. Almasian, M. Parvinzadeh Gashti, M. E. Olya, G. Chizari Fard. Desalin Water Treat, 57(44), 20837-20855,( 2016). DOI: 10.1080/19443994.2015.1112841
  49. Y. S. Ho, G. McKay. Water Res, 34(3), 735-742,(2000). DOI: 10.1016/S0043-1354(99)00232-8
  50. Y. S. Ho, G. McKay.Process Biochem, 38(7), 1047-1061,( 2003). DOI: 10.1016/S0032-9592(02)00239-X
  51. S. Schiewer, A. Balaria. Chem Eng J, 146(2), 211-219,( 2009). DOI: 10.1016/j.cej.2008.05.034
  52. S. Vafakhah, M. E. Bahrololoom, and M. Saeedikhani. J Water Resour Prot, 8(13), 1238-1250,( 2016). DOI: 10.4236/jwarp.2016.813095
  53. H. I. Chieng, L. B. Lim, N. Priyantha. Environ. Technol, 36(1), 86-97,( 2015). DOI: 10.1080/09593330.2014.938124
  54. X. Xiao, D. Liu, Y. Yan, Z. Wu, Z. Wu, G. Cravotto. J Taiwan Inst Chem Eng, 53, 160-167,( 2015). DOI: 10.1016/j.jtice.2015.02.031
  55. G. C. Fard, M. Mirjalili, F. Najafi. J Taiwan Inst Chem Eng, 70, 188-199,( 2017). DOI: 10.1016/j.jtice.2016.10.045

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP