JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 65 No 3 (2020): Journal of the Chilean Chemical Society
Original Research Papers

CRYSTAL STRUCTURE, HIRSHFELD SURFACE ANALYSIS AND ENERGY FRAMEWORK STUDY OF THE NITRONE N-BENZYLIDENE-N-BUTYLAMINO-4-Β-PYRIDYL-N-OXIDE

Gerzon E Delgado
Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
Bio
Published September 10, 2020
Keywords
  • nitrone,
  • 1,3-dipolar cycloaddition,
  • X-ray crystal structure,
  • hydrogen bonds,
  • Hirshfeld
How to Cite
Delgado, G. E., Mora, A. J., Bahsas, A., Koustnetzov, V. V., Chacón, C., Cisterna, J., Cardenas, A., & Brito, I. (2020). CRYSTAL STRUCTURE, HIRSHFELD SURFACE ANALYSIS AND ENERGY FRAMEWORK STUDY OF THE NITRONE N-BENZYLIDENE-N-BUTYLAMINO-4-Β-PYRIDYL-N-OXIDE. Journal of the Chilean Chemical Society, 65(3), 4865-4869. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/1457

Abstract

The title compound, C16H16N2O, a potential antiparasitic agent, crystallizes in the orthorhombic Pca21 space group with unit cell parameters a= 9.912(1) Å, b= 9.035(1) Å, c= 15.681(2) Å. The crystalline structure is stabilized by weak C---H···O and C--H···Cg(π) interactions among neighboring molecules producing an efficient packing with 66.0% of occupied space. The C--H···O hydrogen bond keeps the molecules linked into supramolecular chains propagating along the a axis direction with a graph-set notation C(4), which are reinforced by C--H···Cg(π) interactions. Hirshfeld surface analysis of the intermolecular contacts reveal that the most important contributions for the crystal packing are from H··H (55.2%) and H··C/C··H (27.1%) interactions. Energy framework calculations suggest that the contacts formed between molecules are slightly dispersive in nature.

Captura_1457.PNG

References

  1. V. V. Kouznetsov, L. Vargas-Méndez, F. I. Zubkov, Min. Rev. Org. Chem. 13, 488 (2018).
  2. L. Luna, L. Vargas-Méndez, V. V. Kouznetsov, Org. Med. Chem. Int. J. 7, 555708, (2018).
  3. M. Acelas, V. V. Kouznetsov, A. R. Romero-Bohórquez, Mol. Diversity, 23, 183, (2019).
  4. M. Breugst, R. Huisgen, H. U. Reissig, Eur. J. Org. Chem. 20, 2477, (2018).
  5. R. A. Miranda-Quintana, P. W. Ayers, Theor. Chem. Acc. 135, 172, (2016).
  6. R. A. Miranda-Quintana, M. Martínez-González, D. Hernández-Castillo, L. A. Montero-Cabrera, P. W. Ayers, C. Morell, J. Mol. Model. 23, 236, (2017).
  7. A. Padwa, S. Bur, Adv. Heterocycl. Chem. 119, 241, (2016).
  8. N. A. Bokach, M. L. Kuznetsov, V. Y. Kukushkin, Coord. Chem. Rev. 255, 2946, (2011).
  9. K. V. Gothelf, K. A. Jørgensen, Chem. Rev. 98, 863-910 (1998).
  10. A. Varlamov, V. V. Kouznetsov, F. Zubkov, A. Chernyshev, O. Shurupova, L. Y. Vargas, A. Palma, J. Rivero, A. J. Rosas-Romero, Synthesis, 29, 771, (2002).
  11. V. V. Kouznetsov, J. Rivero, C. Ochoa, E. E. Stashenko, J. R. Martínez, C. Ochoa, D. Montero, J. J. Nogal, C. Fernández, S. Muelas, A. Gómez, A. Bahsas, J. Amaro-Luis, Arch. Pharm. Chem. Life Sci. 338, 32, (2005).
  12. L. Hu, H. M. Martin, T. J. Strathmann, Environ. Sci. Technol. 44, 6416, (2010).
  13. W. M Shi, X. P. Ma, G. F. Su, D. L. Mo, Org. Chem. Front. 3, 116, (2016).
  14. I. Brito, J. Bórquez, D. Robledo, M. J. Simirgiotis, A. Cárdenas, J. Chil. Chem. Soc. 63, 4086, (2018).
  15. A. M. Maharramov, G. Sh. Duruskari, G. Z. Mammadova, A. N. Khalilov, J. M. Aslanova, J. Cisterna, A. Cárdenas, I. Brito, J. Chil. Chem. Soc. 64, 4441, (2019).
  16. A. R. Asgarova, A. N. Khalilov, I. Brito, A. M. Maharramov, N. G. Shikhaliyev, J. Cisterna, A. Cárdenas, A. V. Gurbanov, F. I. Zubkov, K. T. Mahmudov, Acta Cryst. C75, 342, (2019).
  17. G. Mahmoudia, S. Rostamnia, G. Zaragoza, I. Brito, J. Cisterna, A. Cárdenas, J. Chil. Chem. Soc. (in press).
  18. G. E. Delgado, E. Osal, A. J. Mora, T. González, A. Palma, A. Bahsas, J. Struct. Chem. 59, 1248, (2018).
  19. G. E. Delgado, J. A. Henao, J. H. Quintana, H. M. Al-Maqtari, J. Jamalis, H. M. Sirat, J. Struct. Chem. 59, 1493, (2018).
  20. L. E. Fernández, G. E. Delgado, L. V. Maturano, R. M. Tótaro, E. L. Varetti, J. Mol. Struct. 1168, 84, (2018).
  21. G. E. Delgado, S. M. Liew, J. Jamalis, J. Cisterna, A. Cárdenas, I. Brito, J. Mol. Struct. 1210, 128044, (2020).
  22. M. A. Spackman, P. G. Byrom, Chem. Phys. Letters 267, 215, (1997).
  23. M. J. Turner, S. P. Thomas, M. W. Shi, D. Jayatilaka, M. A. Spackman, Chem. Commun. 51, 3735, (2015).
  24. G. M. Sheldrick, Acta Cryst. A. 64, 112, (2008).
  25. G. M. Sheldrick, Acta Cryst. C. 71, 3, (2015).
  26. A. L. Spek, J. Appl. Cryst. 36, 7, (2003).
  27. M. J. Turner, J. J. McKinnon, S. K. Wolff, S. K. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman, Crystal Explorer 17.5. University of Western Australia, 2017.
  28. M. A. Spackman, J. J. McKinnon, CrystEngComm 4, 378, (2002).
  29. C. R. Groom, F. H. Allen, Angew. Chem. Int. Ed. 53, 662, (2014).
  30. S. E. Denmark, J. I. Montgomery, J. Org. Chem. 71, 6211, (2006).
  31. P. Merino, V. Mannucci, T. Tejero, Eur. J. Org. Chem. 23, 3943, (2008).
  32. A. V. Churakov, P. V. Prikhodchenko, A. G. Medvedev, A. A. Mikhaylov, Acta Cryst. E, 73, 1666 (2017).
  33. M. C. Etter, Acc. Chem. Res. 23, 120, (1990).
  34. A. Le Bail, Powder Diffr. 20, 316, (2005)
  35. J. Rodríguez-Carvajal, Fullprof version 7.20, Laboratoire Léon Brillouin (CEA-CNRS), France, 2019.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP