Vol 65 No 3 (2020): Journal of the Chilean Chemical Society
Original Research Papers


Carlos G Peña-Farfal
Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Alemania 01090, 4810101 - Temuco, CHILE
Published September 13, 2020
  • Antioxidants,
  • Greigia sphacelata,
  • ORAC,
  • DPV
How to Cite
Aravena, F., Perez-Rivera, M., Castillo-Felices, R., Mundaca-Uribe, R., Aranda-Bustos, M., & Peña-Farfal, C. G. (2020). DETERMINATION OF ANTIOXIDANT CAPACITY (ORAC) OF GREIGIA SPHACELATA AND CORRELATION WITH VOLTAMMETRIC METHODS. Journal of the Chilean Chemical Society, 65(3), 4925-4928. Retrieved from


The study and determination of the antioxidant capacity of the Greigia Sphacelata fruit were carried out. G. sphacelata is an endemic fruit of central-southern Chile, better known as Chupón or Quiscal. Spectrophotometric and modified ORAC test were developed for antioxidant capacity determinations, and later an electrochemical method was developed by differential impulse voltammetry (DPV) with a vitreous carbon electrode for the quantification of the antioxidant capacity expressed in equivalent of the Trolox standard in μmolL-1. Once the voltammetric test was developed, the correlation study between both methods used to determine the antioxidant capacity of Greigia sphacelata was carried out. The results of the determination of the antioxidant capacity of Greigia sphacelata by ORAC test report an antioxidant capacity of 3525 μmol/100 g equivalents of Trolox. Concerning the concentration obtained by the electrochemical methodology, 682 μmol/100 g Trolox equivalents is obtained for a linear correlation r = 0.969 with the spectrophotometric method.



  1. Hernández-García, D., Wood, C. D., Castro-Obregón, S., & Covarrubias, L. (2010). Reactive oxygen species: a radical role in development?. Free Radical Biology and Medicine, 49(2), 130-143.
  2. Apak, R., Özyürek, M., Güçlü, K., & Çapanoğlu, E. (2016). Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. Journal of Agricultural and Food Chemistry, 64(5), 997-1027.
  3. Bala, M., Troja, R., & Dalanaj, N. (2017). Antioxidant effects of natural bioactive compounds. Journal of Hygienic Engineering and Design, 18, 59– 62.
  4. Begović, N., Mojović, M., & Marković, Z. S. (2017). Antiradical activity of delphinidin, pelargonidin and malvin towards hydroxyl and nitric oxideradicals : the energy requirements calculations as a prediction of the possible antiradical mechanisms. Food Chemistry, 218, 440-446.
  5. Zheng, Y., Deng, G., Chen, D., Liang, Q., Guo, R., & Fu, Z. (2017). Theoretical studies on the antioxidant activity of pinobanksin and its ester derivatives: effects of the chain length and solvent. Food Chemistry, 240, 323 – 329.
  6. Chen, J., Yang, J., Ma, L., Li, J., Shahzad, N., & Kim, C. K. (2020). Structure- antioxidant activity relationship of methoxy, phenolic hydroxyl , and carboxylic acid groups of phenolic acids. Scientific Reports, 10, article number 2611, p. 1–9.
  7. Apak, R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, S. E., Bektaşoǧlu, B., Berker, K. I., & Özyurt, D. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12(7), 1496–1547.
  8. Prior, R. L. (2015). Oxygen radical absorbance capacity (ORAC): New horizons in relating dietary antioxidants/bioactives and health benefits. Journal of functional foods, 18, 797-810.
  9. Londoño Londoño, J. (2012). Antioxidantes: importancia biológica y métodos para medir su actividad. In Desarrollo y Transversalidad serie Lasallista Investigación y Ciencia. Corporación Universitaria Lasallista.
  10. Ziyatdinova, G., Salikhova, I., Skorobogatova, N., Chibisova, M., & Budnikov, H. (2015). New Electrochemistry-Based Approaches to Brandy Quality Evaluation Using Antioxidant Parameters. Food Analytical Methods, 8(7), 1794–1803.
  11. Haque, M. A., Morozova, K., Lawrence, N., Ferrentino, G., & Scampicchio, M. (2020). Radical Scavenging Activity of Antioxidants by Cyclic Voltammetry. Electroanalysis, 1–7.
  12. Deutchoua, A. D. D., Siegnin, R., Kouteu, G. K., Dedzo, G. K., & Ngameni, E. (2019). Electrochemistry of 2,2-Diphenyl-1-picrylhydrazyl (DPPH) in Acetonitrile in Presence of Ascorbic Acid - Application for Antioxidant Properties Evaluation. ChemistrySelect, 4(46), 13746–13753.
  13. Schilder, W. H., Tanumihardja, E., Leferink, A. M., Berg, A. Van Den, & Olthuis, W. (2020). Heliyon Determining the antioxidant properties of various beverages using staircase voltammetry - E + E. Heliyon, 6(January), e04210.
  14. Iqbal, S., Perveen, S., & Mohiuddin, S. (2020). Antioxidant studies of citric acid and citrus fruits towards paraquat by cyclic voltammetry : An antidote of paraquat poisoning. Pak J Pharm Sci, 33(1(Supplementary)),263–267.
  15. Hornung-leoni, C. T. (2011). Bromeliads: traditional plant food in latin america since prehispanic times. Polibotánica, N32, 219–229.
  16. Elgueta, E. I., Valenzuela, J., & Rau, J. R. (2007). New insights into the prey spectrum of Darwin′s fox (Pseudalopex fulvipes Martin, 1837) on Chiloé Island, Chile. Mammalian Biology, 72(3), 179–185.
  17. Will, B., & Zizka, G. (1999). A review of the genus Greigia regel (Bromeliaceae) in Chile. Harvard Papers in Botany, 4(1), 225-239.
  18. Rapaport, E.H., Ladio, A and E.H. Sanz, 2003. Plantas nativas comestibles de la Patagonia Andina Argentino/Chilena. Parte II. Programa de Extensión Universitaria. Universidad Nacional del Comahue. Ediciones de Imaginaria. Argentina. 30 pp.
  19. Barrientos, R. E., Ahmed, S., Cortés, C., & Fernández-galleguillos, C. (2020). Chemical Fingerprinting and Biological Evaluation of the Endemic Chilean Fruit Greigia sphacelata (Ruiz and Pav.) Regel (Bromeliaceae) by UHPLC- PDA- Orbitrap-Mass Spectrometry. Molecules, 25(16), 3750.
  20. Flagg, M. L., Wächter, G. A., Davis, A. L., Montenegro, G., & Timmermann, B. N. (2000). Two novel flavanones from Greigia sphacelata. Journal of Natural Products, 63(12), 1689–1691.
  21. Wang, Joseph. (2006). Analytical electrochemistry: John Wiley & Sons.
  22. Osteryoung, Janet G, & Osteryoung, Robert A. (1985). Square wave voltammetry. Analytical Chemistry, 57(1), 101A-110A.
  23. Jiao, Y., Kilmartin, P. A., Fan, M., & Young, S. (2018). Assessment of phenolic contributors to antioxidant activity of new kiwifruit cultivars using cyclic voltammetry combined with HPLC. Food Chemistry, 268, 77–85.
  24. Ortiz, R., Antilén, M., Speisky, H., Aliaga, M. E., López-Alarcón, C., & Baugh, S. (2012). Application of a microplate-based ORAC-pyrogallol red assay for the estimation of antioxidant capacity: first action 2012.03. Journal of AOAC International, 95(6), 1558-1561.
  25. Restrepo, L., & Gonzáles, J. (2007). From Pearson to Spearman. Revista Colombiana de Ciencias Pecuarias, 20(2), 183–192.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP