JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 65 No 2 (2020): Journal of the Chilean Chemical Society
Original Research Papers

Co-PRECIPITATION SYNTHESIS, CHARACTERIZATION OF CoFe2O4 NANOMATERIAL AND EVALUATION OF ITS TOXICITY BEHAVIOR ON HUMAN LEUKEMIA CANCER K562 CELL LINE

Leila Kafi-Ahmadi
Urmia University
Shahin Khademinia
Department of Inorganic Chemistry, Faculty of Chemistry, Semnan University, Semnan, Iran
Mehrin Najafzadeh Nansa
Department of Chemistry Faculty of Science, Payame Noor University, Tehran, Iran
Abdol Ali Alemi
Synthesis and Investigation Lab of Nano Materials, Faculty of Chemistry, University of Tabriz, Iran
Majid Mahdavi
Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
Ahmad Poursattar Marjani
Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
Published July 18, 2020
Keywords
  • CoFe2O4,
  • Nanoparticles,
  • Chronic Myeloid Leukemia (CML),
  • Co-precipitation,
  • K562 cell

Abstract

 In this study, cobalt ferrite nanomaterial with inverse spinel structure was synthesized via a co-precipitation method using Co(NO3)3.6H2O and Fe(NO3)3.9H2O. A 15% NH4OH solution was used as an alkaline agent for pH adjustment. Oleic acid was used as a coating agent on the surface of the synthesized cobalt ferrite nanoparticles. PXRD analysis confirmed that the obtained material had a main CoFe2O4 cubic crystal structure with space group Fd-3m and lattice parameters a=b=c= 8.40 Å (JCPDS standard card no = 01-077-0426). According to the SEM analysis, the pseudo-spherical particles size distribution and morphology of the as-synthesized nanomaterial were homogeneous. The magnetic behavior of the obtained material was analyzed by vibrating-sample magnetometer (VSM). Besides, anti-cancer effect of the as-synthesized cobalt ferrite nanoparticles was examined on an experimental model of acute myeloid leukemia (CML) K562 cell line for the first time. Inhibition of cell growth and cytotoxicity (apoptosis) that are characteristics features of cobalt ferrite nanoparticles are tested on K562 cell line. The results showed growth and viability inhibition and induction of apoptosis in K562 cells treated with the nanoparticles.

 

1446.jpg

References

  1. V. Kesavan, P.S. Sivanand, S. Chandrasekaran, Y. Koltypin, A. Gedanken, Angew Chem. Int. Ed. 38, 3521 (1999).
  2. L.H. Huo, W. Li, L.H. Lu, H.N. Cui, S. Q. Xi, J. Wang, B. Zhao, Y.C. Shen, Z.H. Lu, Chem. Mater. 12, 790 (2000).
  3. K. Suresh, K. C. Patil, J. Mater. Sci. Lett. 12, 572 (1993).
  4. M. Kroell, M. Pridoehl, G. Zimmermann, L. Pop, S. Odenbach, A. Hartwig, J. Magn. Mater. 289, 21 (2005).
  5. K.C. Patial, M.S. Hegde, T. Rattan, T. Aruna, Chemistry of nano crystalline oxide materials, combustion synthesis, properties and applications, Published by World Scientific Published Co. Pte. Ltd, 2008.
  6. J.E. Kim, J.Y. Shin, M.H. Cho, Arch. Toxicol. 86, 685 (2012).
  7. V.P. Torcilin, Nanoparticulates as drug carriers, 1st Edition, Imperial College Press, 2006.
  8. J. Ding, P.G. McCormick, Solid State Commun. 95, 313 (1995).
  9. K. Maaz, A. Mumtaza, S.K. Hasanain, A. Ceylan, J. Magn. Magn. Mater. 308, 289 (2007).
  10. A. Pui, D. Gherca, G. Carja, Dig. J. Nanomater Biostruct. 4, 1783 (2011).
  11. F. Liu, S. Laurent, A. Roch, L.V. Elst, R.N. Muller, J. Nanomaterials., 2013, Article ID 462540, http://dx.doi.org/10.1155/2013/462540.
  12. S.R. Ahmed, P. Kofinas, Macromolecules. 35, 3338 (2002).
  13. Y. Liu, Y. Zhang, J.D. Feng, C.F. Li, J. Shi, R. Xiong, J. Exp. Nanosc. 4, 159 (2009).
  14. S. Sathiya, K. Parasuraman, M. Anbarasu, K. Balamurugan, Nano Vision. 5, 133 (2015).
  15. F. Mansouri, G. Amiri, M. Fatemi, Nanomed J. 3, 196 (2016).
  16. F. Huixia, C. Baiyi, Z. Deyi, Z. Jianqiang, T. Lin, J. Magn. Magn. Mater. 35668 (2014).
  17. Z. Zi, Y. Sun, X. Zhu, Z. Yang, J. Dai, W. Song, J. Magn. Magn. Mater. 321, 1251 (2009).
  18. M. Houshiar, F. Zebhi, Z.J. Razi, A. Alidoust, Z. Askari, J. Magn. Magn. Mater. 371, 43 (2014).
  19. G. Sheet, A.R. Cunliffe, E.J. Offerman, C.M. Folkman, J. Appl. Phys. 107, 104309 (2010).
  20. V.L. Othéro de Brito, S.A. Cunha, L.V. Lemos, C.B. Nunes, Sensors. 12, 10086 (2012).
  21. S. Pauline, A.P. Amaliya, Arch. Appl. Sci. Res. 3, 213 (2011).
  22. Z. Zhou, Y. Zhang, Z. Wang, W. Wei, W. Tang, J. Shi, R. Xiong, Appl. Surf. Sci. 254, 6972 (2008).
  23. G.R. Amiri, S. Fatahian, A.R. Jelvani, R.M. Dehaghi, M. Habibi, Adv. Mater Rapid. Commun. 5, 1178 (2011).
  24. K.S. Rao, G.S.V.R.K. Choudary, K.H. Rao, C. Sujatha, Proced. Mater. Sci. 10, 19 (2015).
  25. W.P. Wang, H. Yang, T. Xian, J.L. Jiang, Mater Trans. 53, 1586 (2012).
  26. C. Sun, J.S.H. Lee, M. Zhang, Adv. Drug Deliv. Rev. 60, 1252 (2008).
  27. Z. Dai, R.C. Quackenbush, K.D. Courtney, M. Grove, D. Cortez, G.W. Reuther, A.M. Pendergast, Genes Dev. 12, 1415 (1998).
  28. R.T. Maziarz, M.J. Mauro, Bone Marrow Transplant. 32, 459 (2003).
  29. D. Fabbro, S. Ruetz, E. Buchdunger, S.W. Cowan-Jacob, G. Fendrich, J. Liebetanz, J. Mestan, T. O'Reilly, P. Traxler, B. Chaudhuri, H. Fretz, J. Zimmermann, T. Meyer, G. Caravatti, P. Furet, P.W. Manley, Pharm. Therap. 93, 79 (2002).
  30. S. Han, Y. Kim, T. Kim, BMB reports. 1 (2008).
  31. A. Russo, M. Terrasi, V. Agnese, D. Santini, V. Bazan, Ann. Oncol., 2006, 17, 115-123.
  32. H. Guo, X. Yang, T. Xiao, W. Zhang, L. Lou, J. Mugnier, Appl. Sur. Sci. 230, 215 (2004).
  33. G. Baldi, D. Bonacchi, M.C. Franchini, D. Gentili, G. Lorenzi, A. Ricci, C. Ravagli, Langmuir. 23, 4026 (2007).
  34. B. Babic-Stojic, V. Jokanovic, D. Milivojevic, Z. Jaglicic, D. Makovec, N. Jovic, M. J. Nanomater. 2013, Article ID 741036. http://dx.doi.org/10.1155/2013/741036.
  35. S. Hyewon, H. Oh, C. Lee, J. Microbiol Biotechnol. 152, 540 (2011).
  36. S. Jeong, M. Han, C. Jin, G. Kim, B. Choi, T. Nam, S. Kim, Y. Choi, Int. J. Mol. Med. 25, 31 (2010).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP