JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 65 No 3 (2020): Journal of the Chilean Chemical Society
Original Research Papers

FABRICATION OF PLATINUM NANOPARTICLE/BORON NITRIDE QUANTUM DOTS/6-METHYL-2-(3-HYDROXY-4-METHOXYBENZYLIDENAMINO)-BENZOTHIAZOLE (ILS) NANOCOMPOSITE FOR ELECTROCATALYTIC OXIDATION OF METHANOL

Published September 13, 2020
Keywords
  • Fuel cell,
  • Polyoxometalate,
  • Ionic Liquid,
  • Electrochemistry
How to Cite
BEYTUR, M. (2020). FABRICATION OF PLATINUM NANOPARTICLE/BORON NITRIDE QUANTUM DOTS/6-METHYL-2-(3-HYDROXY-4-METHOXYBENZYLIDENAMINO)-BENZOTHIAZOLE (ILS) NANOCOMPOSITE FOR ELECTROCATALYTIC OXIDATION OF METHANOL. Journal of the Chilean Chemical Society, 65(3), 4929-4933. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/1424

Abstract

Since worldwide energy demand is growing, conventional fuel reserves are getting low and pollution is increasing, fuel cell applications are becoming more widespread day by day. In this study, preparation of Platinum nanoparticle (PtNPs)/boron nitride quantum dots (BNQDs)/6-methyl-2-(3-hydroxy-4-methoxybenzylidenamino)-benzothiazole (ILs) nanocomposite (PtNPs/BNQDs/ILs) has been made. Afterwards, using various equipment and methods, characterization has been carried out. These equipment and methods are as follows: Transmission Electron Microscope, Scanning Electron Microscope, X-Ray Photo Electron Spectroscopy, Energy-Dispersive X-Ray Spectroscopy and X-Ray Diffraction Method. The catalyst developed on PtNPs/BNQDs/ILs has proven to be cost-effective. Moreover, the PtNPs/BNQDs/ILs nanocomposite has achieved a higher peak for the current oxidation of methanol, when compared to BNQDs/ILs and ILs. Therefore, this catalyst has a better catalytic activity.

1424.png

References

  1. M.H. Habibi, M. Montazerozohori, A. Lalegani, R.W. Harrington, W. Clegg, J. Fluor. Chem. 127, 769-773, (2006)
  2. S.A. Abbas, M. Munir, A. Fatima, S. Naheed, Z.E. Ilyas, J. Life Sci. 1, 37-40, (2010).
  3. Z. Cimerman, S. Miljanic, J. Antolic, Spectrosc. Lett. 32, 181-196, (1999).
  4. R.D. Jones, D.A. Summervile, F. Basolo, Chem. Rev. 79, 139-179, (1979).
  5. Ö. Aktaş Yokuş, H. Yüksek, S. Manap, F. Aytemiz, M. Alkan, M. Beytur, Ö. Gürsoy Kol, Bulgarian Chemical Communications, 49 (1), 98-106, (2017).
  6. H. Yüksek, B. Göksu, S. Manap, M. Beytur, Ö. Gürsoy Kol, Chemical Science International Journal, 22 (2), 1-29, (2018).
  7. T.M.A. IsmailJ. Coord. Chem. 58 (2), 141-151, (2005).
  8. M.T.H. Tarafder, N. Saravanan, K.A. Crouse, A.N. Ali, Trans. Met. Chem. 26, 613-618, (2001).
  9. Ş. Bahçeci, N. Yıldırım, S. Manap, M. Beytur, H. Yüksek, Rasayan journal of chemistry, 9 (3), 494-501, (2016).
  10. C.A. Mc Auliffe, R.V. Parish, S.M. Abu-El-Wafa, R.M. Issa, Inorg. Chim. Acta. 115, 91-94, (1986).
  11. S. Zolezzi, E. Spodine, A. Decinti, Polyhedron 21, 55-59, (2002).
  12. V. Ambike, S. Adsule, F. Ahmed, Z. Wang, Z. Afrasiabi, E. Sinn, F. Sarkar, S. Padhye, J. Inorg. Biochem. 101, 1517-1524, (2007).
  13. M.I. Mejeha, M.C. Nwandu, K.B. Okeoma, L.A. Nnanna, M.A. Chidiebere, F.C. Eze, E.E. Oguzie, J. Mater. Sci. 47, 2559-2572, (2012).
  14. A.A. Abdel Aziz, J. Lumin. 143, 663-669, (2013).
  15. W. Al Zoubi, N.D. Al Mohanna, Spectrochim. Acta A, 132, 854-870, (2014).
  16. S. Andres, P. Guarin, S. Dufresne, D. Tsang, A. Sylla, W.G. Skene, J. Mater. Chem. 17, 2801-2807, 2007.
  17. S. Di Bella, I.P. Oliveri, A. Colombo, C. Dragonetti, S. Righetto, D. Roberto, Dalton T. 41, 7013, (2012).
  18. S. Kumar, D.N. Dhar, P.N. Saxena, J. Sci. Int. Res. 68, 181, 2009.
  19. N.M. Hosnya, M.A. Hussiena, F.M. Radwana, N. Nawar, Spectrochim. Acta A, 132, 121-129, (2014).
  20. D. Sek, A. Iwan, B. Jarzabek, B. Kaczmarczyk, J. Kasperczyk, Z. Mazurak, M. Domanski, K. Karon, M. Lapkowski, Macromolecules, 41, 6653, (2008).
  21. A. Zabulica, M. Balan, D. Belei, M. Sava, B.C. Simionescu, L. Marin, Dyes Pigm. 96, 686, (2013).
  22. . F. Azam, S. Singh, S.L. Khokhra, O. Prakash, J. Zhejiang, Univ. Sci. B. 8, 446-452, (2007).
  23. P. Przybylski, A. Huczynski, K. Pyta, B. Brzezinski, F. Bartl, Cur. Org. Chem. 13, 124, (2009).
  24. S. Amer, N. El-Wakiel, H. El-Ghamry, J. Mol. Struct. 1049, 326-332, (2013).
  25. I. Kraicheva, I. Tsacheva, E. Vodenicharova, E. Tashev, T. Tosheva, A. Kril, M. Topashka-Ancheva, I. Iliev, T.S. Gerasimova, K. Troev, Bioorg. Med. Chem. 20, 117-124, (2012).
  26. S.D. Khanye, J. Gutb, P.J. Rosenthal, K. Chibale, Gregory S. Smith, J. Organomet. Chem. 696, 3296-3300, (2011).
  27. . A.M. Alafeefy, M.A. Bakht, M.A. Ganaie, M.N. Ansarie, N.N. El-Sayed, A.S. Awaad, Bioorg. Med. Chem. Lett. 25, 179-183, (2015).
  28. B. Vivekanand, K.M. Raj, B.H.M. Mruthyunjayaswamy, J. Mol. Struct. 1079, 214-224, (2015).
  29. Z. Beigi, A.H. Kianfar, H. Farrokhpour, M. Roushani, M. H. Azarian, W.A. K. Mahmood, J. Mol. Liq. 249, 117-125, (2018).
  30. H. Jafar, M. Neda, R. Mahmoud, M. Leila, B. Mehrangiz, R. Mehdi, Dalton Trans. 42 (34), 12364-12369, (2013).
  31. H. Jafar, B. Zahra, B. Mehrangiz, R. Mahmoud, R. Mehdi, J. Organomet. Chem. 769, 1–6, (2014).
  32. M.S. Faber, S. Jin, Energ. Environ. Sci. 7, 3519-3542, (2014).
  33. S. Khadempir, A. Ahmadpour, M.T .Hamed Mosavian, N. Ashraf, F.F. Bamoharram, R. Fernandez-Pacheco, J.M. de la Fuente, S.G. Mitchell, RSC Adv. 6, 5359-5366, (2016).
  34. R. Liu, G. Zhang, H. Cao, S. Zhang, Y. Xie, A. Haider, U. Kortz, B. Chen, N.S. Dalal, Y. Zhao, L. Zhi, C.-X. Wu, L.-K. Yan, Z. Su, and B. Keita, Energ. Environ. Sci. 9, 1012-1023, (2016).
  35. . J. Lu, L. Hong, Y. Yang, S. Xu, S.Wang, J. Yuan, L. Niu, J. Nanopart. Res. 16, 2162-2168, (2014).
  36. M. Rashid, T.-S. Jun, Y. Jung, Y. S. Kim, Sensor Actuat. B-Chem. 208, 7-13, (2015).
  37. M.L. Yola, N. Atar, J. Electrochem. Soc. 165 (14), 897-902, (2018).
  38. Q. Weng, B. Wang, X. Wang, N. Hanagata, X. Li, D. Liu, X. Wang, X. Jiang, Y. Bando, D. Golberg, ACS. Nano. 8 (6), 6123-6130, (2014).
  39. A.F. Khan, D.A.C. Brownson, E.P. Randviir, G.C. Smith, C.E. Banks, Anal. Chem. 88 (19), 9729-9737, (2016).
  40. N. Atar, M.L. Yola, J. Electrochem. Soc. 165 (5), 255-262, (2018).
  41. Y. Ide, F. Liu, J. Zhang, N. Kawamoto, K. Komaguchi, Y. Bando, D. Golberg, J. Mater. Chem. A, 2 (12), 4150 (2014)., Anal. Chem. 2, 4150-4156, (2014).
  42. L. Hongling, T.R. Yingjie, T.S. Hon, Z. Xu, T.E.H. Tong, Small, 11 (48), 6491-6499, (2015).
  43. M. Ramuz, A. Hama, M. Huerta, J. Rivnay, P. Leleux, R.O. Qwens, Adv. Mater. 26 (41), 7083-7090, (2014).
  44. Z. Lei, S. Xu, J. Wan, P. Wu, Nanoscale, 7 (45), 18902-18907, (2015).
  45. L. Mengli, X. Yuanhong, W. Yao, C. Xu, J. Xuqiang, N. Fushuang, S. Zhongqian, L. Jingquan Adv. Opt. Mater. 5 (3), 1600661, (2017).
  46. M.L. Yola, N. Atar, Z. Üstündağ, A.O. Solak, J. Electroanal. Chem. 698, 9-16, (2013).
  47. N. Atar, M.L. Yola, J. Electrochem. Soc. 164, 223-229, (2017).
  48. L.H. Li, Y. Chen, B.M. Cheng, M.Y. Lin, S.L. Chou, Y.C. Peng, Appl. Phys. Lett. 100, 261108, (2012).
  49. L.H. Li, Y. Chen, G. Behan, H. Zhang, M. Petravic, A.M. Glushenkov, J. Mater. Chem. 21, 11862-11866, (2011).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP