JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 62 No 1 (2017): Journal of the Chilean Chemical Society
Original Research Papers

NANO-SIZED La0.5Ca0.5CoO3-MEDIATED REDUCTION BY NaBH4 OF ARYL NITRILES TO BIS-(BENZYL) AMINES

Hossein Bavandi
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad
Ali Shiri
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad
Haman Tavakkoli
Department of Chemistry, Ahvaz Branch, Islamic Azad University
Published June 5, 2017
Keywords
  • Perovskite,
  • Nanocatalyst,
  • Sec-amines,
  • Reduction
How to Cite
Bavandi, H., Shiri, A., & Tavakkoli, H. (2017). NANO-SIZED La0.5Ca0.5CoO3-MEDIATED REDUCTION BY NaBH4 OF ARYL NITRILES TO BIS-(BENZYL) AMINES. Journal of the Chilean Chemical Society, 62(1). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/142

Abstract

Nano-sized La0.5Ca0.5CoO3 perovskite, which was produced via the sol-gel method, was an efficient heterogeneous catalyst in combination with NaBH4 for the rapid chemoselective reduction of aryl nitriles to bis-(benzyl)amines at 40 ºC in good to excellent yields. The physico-chemical properties of the catalyst were characterized by means of differential thermal analysis (DTA), thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and particle size distributions images. The results show that nanoparticles have regular shapes with well-defined crystal faces with an average size of 30 nm. 

References

  1. F. Ullman, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley- VCH, Weinheim, Germany, 2008.
  2. S.A. Lawrence, Amines: Synthesis, Properties and Application, Cambridge University Press, Cambridge, U.K., 2004.
  3. S.S. Insaf , D.T. Witiak, Synthesis, 3, 435, (1999).
  4. Z. Rappoport, The Chemistry of the Cyano Group, Wiley Interscience, New York, 1970.
  5. J. March, Advanced Organic Chemistry: Reactions, Mechanisms and Structure Wiley Interscience, Toronto, Canada, 1992.
  6. D. Addis, S. Enthaler, E. K. Jung, B. Wendt, M. Beller, Tetrahedron Lett. 50, 3656 (2009).
  7. S. Enthaler, D. Addis, K. Junge, G. Erre, M. Beller, Chem. Eur. J. 14, 9491 (2008).
  8. E.R.H. Walker, Chem. Soc. Rev. 5, 23, (1976).
  9. B. Klenke, I.H. Gilbert, J. Org. Chem. 66, 2480, (2001).
  10. C.A. Buehler, D.E. Pearson, Survey of Organic Synthesis, Wiley- Interscience, New York, 1970, p. 413.
  11. O. Mitsunobu, Comprehensive Organic Synthesis; Trost, B. M. Fleming, I., Eds.; Pergamon: Oxford, U.K., 1991; Vol. 6, p 65.
  12. H.C. Brown, J.S. Cha, J. Org. Chem. 58, 3974, (1993).
  13. M. Hudlicky, Reductions in Organic Chemistry, Second ed., ACS Monograph 188, American Chemical Society, Washington, D.C, 1996, p. 19.
  14. N.M. Yoon, H.C. Brown, J. Am. Chem. Soc. 90, 2927, (1968).
  15. R.C. Wade, J. Mol. Catal. 18, 273, (1983).
  16. J.M. Khurana, G. Kukreja, Synth. Commun. 32, 1265, (2002).
  17. B. Ganem, J.O. Osby, Chem. Rev. 86, 763, (1986).
  18. H.C. Brown, Boranes in Organic Chemistry, Cornell University Press, New York, 1972, pp. 209-251.
  19. C.D. Chandler, C. Roger, M.J. Hampden-Smith, Chem. Rev. 93, 1205, (1993).
  20. R. Robert, M.H. Aguirre, P. Hug, A. Reller, A. Weidenkaff, Acta Mater. 55, 4965, (2007).
  21. M. Nandia, K. Sarkara, M. Seikhc, A. Bhaumik, Microporous Mesoporous Mater. 143, 392, (2011).
  22. H. Aono, E. Traversa, M. Sakamoto, Y. Sadaoka, Sens. Actuators, B: Chem., 94, 132, (2003).
  23. R. Horyn, R. Klimkiewicz, Appl. Catal., A: Gen., 370, 72, (2009).
  24. N. Pal, M. Paul, A. Bhaumik, Appl. Catal., A: Gen., 393, 153, (2011).
  25. M. Yazdanbakhsh, H. Tavakkoli, S. M. Hosseini, Desalination., 281, 388, (2011).
  26. H. Tavakkoli, M. Yazdanbakhsh, Microporous Mesoporous Mater., 176, 86, (2013).
  27. A.V. Salker, N.J. Choi, J.H. Kwak, B.S. Joo, D.D. Lee, Sens. Actuators, B: Chem. 106, 461, (2005).
  28. M.D. Smith, A.F. Stepan, C. Ramarao, P.E. Brennan, S.V. Ley, Chem. Commun. 21, 2652, (2003).
  29. S.P. Andrews, A.F. Stepan, H. Tanaka, S.V. Ley, M.D. Smith, Adv. Synth. Catal. 347, 647, (2005).
  30. S. Lohmann, S.P. Andrews, B.J. Burke, M.D. Smith, J.P. Attfield, H. Tanaka, K. Kaneko, S.V. Ley, Synlett, 8, 1291, (2005).
  31. G. Pilania, P.X. Gao, R. Ramprasad, J. Phys. Chem. 116, 26349, (2012).
  32. M. Yazdanbakhsh, I. Khosravi, M.S. Mashhoori, M. Rahimizadeh, A. Shiri, M. Bakavoli, Mater. Res. Bull. 47, 413, (2012).
  33. T. Sanaeishoar, H. Tavakkoli, F. Mohave, Appl. Catal. A, 470, 56, (2014).
  34. A. Shiri, F. Soleymanpour, H. Eshghi, I. Khosravi, Chin. J. Catal. 36, 1191, (2015).
  35. C.F. Kao, C.L. Jeng, Ceram. Int. 25, 375, (1999).
  36. C.F. Kao, C.L. Jeng, Ceram. Int. 26, 237, (2000).
  37. A. Neumann, D. Walter, Thermochim. Acta. 445, 200, (2006).
  38. M. Mazloumi, N. Shahcheraghi, A. Kajbafval, S. Zanganeh, A. Lak, M.S. Mohajerani, S.K. Sadrinezhaad, J. Alloys Compd. 473, 283, (2009).
  39. H.E. Zhang, B.F. Zhang, G.F. Wang, X.H. Dong, Y. Gao, J. Magn. Magn. Mater. 312, 126, (2007).
  40. L.L. Lorentz-Petersen, P. Jensen, R. Madsen, Synthesis, 24, 4110, (2009).
  41. R. Juday, H. Adkins, J. Am. Chem. Soc. 77, 4559, (1955).
  42. W. He, L. Wang, C. Sun, K. Wu, S. He, J. Chen, P. Wu, Z. Yu, Chem. Eur. J. 17, 13308, (2011).
  43. N. Azizi, E. Akbari, A.K. Amiri, M.R. Saidi, Tetrahedron Lett. 49, 6682, (2008).
  44. H. Goksu, S.F. Ho, O.N. Metin, K. Korkmaz, A.G. Mendoza, M.S. Gultekin, S. Sun, ACS Catal. 4, 1777, (2014).
  45. A. Galan, J. De Mendoza, P. Prados, J. Rojo, A.M. Echavarren, J. Org. Chem. 56, 452, (1991).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP