JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 65 No 2 (2020): Journal of the Chilean Chemical Society
Original Research Papers

PROMOTION OF CATALYTIC PROPERTIES OF VANILLIN LOADED MCM-41 BY CU(I) AND CU(II) FOR ENHANCED REMOVAL OF QUINOLINE CONTAMINANTS

Mina Kamani
Department of Chemistry, South Tehran Branch, Islamic Azad University, Tehran, 11365-4435, Iran
Reza Fazaeli
Islamic Azad University-South Tehran Branch
Mehdi Arjmand
Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, 11365-4435, Iran
Mohammad Hossein Ghorbani
Department of Chemistry, South Tehran Branch, Islamic Azad University, Tehran, 11365-4435, Iran
Published July 18, 2020
Keywords
  • Catalytic Properties,
  • Quinoline,
  • Response Surface Methodology,
  • Vanillin/MCM-41
How to Cite
Kamani, M., Fazaeli, R., Arjmand, M., & Ghorbani, M. H. (2020). PROMOTION OF CATALYTIC PROPERTIES OF VANILLIN LOADED MCM-41 BY CU(I) AND CU(II) FOR ENHANCED REMOVAL OF QUINOLINE CONTAMINANTS. Journal of the Chilean Chemical Society, 65(2), 4833-4841. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/1373

Abstract

In the present study, to enhance removal of quinoline contaminants using natural active component, vanillin was loaded onto the MCM-41 (Mobile Component Material) nanoparticles in a simple way. The product was divided into two parts, which were improved by Copper(I) and Copper(II) salts. Promoted synthetic nanocatalysts (Cu(I)/Van./MCM-41, and Cu(II)/Van./MCM-41) were characterized using X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-Ray Spectroscopy (EDS), Mapping, Fourier-Transform Infrared Spectroscopy (FTIR), and BET/BJH (Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH)) techniques. To reach optimal conditions, experimental design was performed using Response Surface Methodology (RSM). The experiments were done with the aid of nanocomposites, in presence of ultraviolet radiation without any auxiliary oxidants. Degradation percentages were measured by an Ultraviolet (UV) spectrophotometer. The products were identified using Gas Chromatography–Mass (GC-Mass) technique, and some mechanisms for quinoline removal were proposed. The results indicated that Cu (I) showed better performance in enhanced removal of quinoline than Cu(II).

 

1373.jpg

References

  1. - JC. García-Martínez, CO. Castillo-Araiza, JA. De los Reyes Heredia, E. Trejo, A. Montesinos. Chem. Eng. 210, 53, (2012)
  2. - JC. García-Martínez, HG. Uribe, MM. González-Brambila, JA. Colín-Luna, YE. Escobedo-García, A. López-Gaona, L. Alvarado-Perea. Catal. Today. 305, 40, (2018)
  3. - P. Rayo, MS. Rana, J. Ramírez, J. Ancheyta, A. Aguilar-Elguézabal. Catal. Today. 130, 283, (2008)
  4. - P. Rayo, J. Ramírez, MS. Rana, J. Ancheyta, A. Aguilar-Elguézabal. Ind. Eng. Chem. Res. 48, 1242, (2008)
  5. - P. Schacht, L. Noreña-Franco, J. Ancheyta, S. Ramirez, I. Hernández-Pérez, LA. Garcia. Catal. Today. 98, 115, (2004)
  6. - IR. Guimarães, LC. Oliveira, PF. Queiroz, TC. Ramalho, M. Pereira, JD. Fabris, JD. Ardisson. APPL. CATAL. A-GEN. 347, 89, (2008)
  7. - PQ. Yuan, ZM. Cheng, XY. Zhang, WK. Yuan. Fuel. 85, 367, (2006)
  8. - MF. Dahab, YW. Lee, I. Bogardi. WATER. SCI. TECHNOL. 30, 45, (1994)
  9. - M. Sadeghi, S. Yekta, H. Ghaedi. APPL. SURF. SCI. 400, 471, (2017)
  10. - TT. Marrs, RL. Maynard, F. Sidell, editors. Chemical warfare agents: toxicology and treatment. John Wiley & Sons Inc., 2007.
  11. - R. Sharma, B. Gupta, N. Singh, JR. Acharya, K. Musilek, K. Kuca, K. Kumar Ghosh. Mini-Rev. Med. 15, 58, (2015)
  12. - H. FOLLOWS. Technical Secretariat, Organisation for the Prohibition of Chemical Weapons, The Hague, The Netherlands, (2005)
  13. - A. Nezamzadeh-Ejhieh, Z. Salimi. Desalination. 280, 281, (2011)
  14. - J. Gao, X. Luan, J. Wang, B. Wang, K. Li, Y. Li, G. Han. Desalination. 268, 68, (2011)
  15. - B. ROBABEH, SA. SHARIATI. J. CHIL. CHEM. SOC. 60, 2900, (2015)
  16. - A. Jukić. Natural Gas Composition, Classification, Processing, (2013)
  17. - R. López-Fonseca, JI. Gutiérrez-Ortiz, JL. Ayastui, MA. Gutiérrez-Ortiz, JR. González-Velasco. APPL. CATAL. B-ENVIRON. 45, 13, (2003)
  18. - JG. Bednorz, KA. Müller. Z. PHYS. B. CON. MAT. 64, 189, (1986)
  19. - AD. Berry, DK. Gaskill, RT. Holm, EJ. Cukauskas, R. Kaplan, RL. Henry. Appl. Phys. 52, 1743, (1988)
  20. - JM. DeSimone. Science. 297, 799, (2002)
  21. - A. Ghorbani-Choghamarani, F. Nikpour, F. Ghorbani, F. Havasi. RSC. Adv. 5, 33212, (2015)
  22. - CT. Kresge, ME. Leonowicz, WJ. Roth, JC. Vartuli, JS. Beck. Nature. 359, 710, (1992)
  23. - JY. Ying, CP. Mehnert, MS. Wong. Angew. Chem. Int. 38, 56, (1999)
  24. - M. Hajjami, F. Ghorbani, F. Bakhti. APPL. CATAL. A-GEN. 470, 303, (2014)
  25. - RM. Martín-Aranda, J. Čejka. TOP. CATAL. 53, 141, (2010)
  26. - ND. Chakkalakkal, PS. Chittilappilly, Asia. Pac. J. Res. 2320, 5504
  27. - II. Slowing, JL. Vivero-Escoto, CW. Wu, VSY. Lin. Adv. Drug Deliv. Rev. 60, 1278, (2008)
  28. - XN. Wei, HL. Wang, ZD. Li, ZQ. Huang, HP. Qi, WF. Jiang. APPL. SURF. SCI. 372, 108, (2016)
  29. - M. Khanmoradi, M. Nikoorazm, A. Ghorbani‐Choghamarani. Appl. Organomet. 31, e3693, (2017)
  30. - X. Lin, X. Zeng, R. Zhou, H. Wang. REACT. KINET. MECH. CAT. 126, 353, (2019)
  31. - BN. Bhadra, JY. Song, N. Uddin, NA. Khan, S. Kim, CH. Choi, SH. Jhung. APPL. CATAL. B-ENVIRON. 240, 215, (2019)
  32. - D. Chen, J. Shi, Y. Yao, S. Wang, C. Wu. REACT. KINET. MECH. CAT. 127, 315, (2019)
  33. - D. Vaddi, MV. Subbarao, MPS. Muralikrishna. Phys. Chem. Res. 7, 449, (2019)
  34. - M. Kamani, R. Fazaeli, M. Arjmand, M.H. Ghorbani. Phys. Chem. Res. 10.22036/pcr.2019.201520.1676 (2019)
  35. - A. Almasian, ME. Olya, NM. Mahmoodi, E. Zarinabadi. DESALIN. WATER. TREAT. 147, 343, (2019)
  36. - E. Zarrinabadi, R. Abghari, A. Nazari, M. Mirjalili. Modeling and optimization of electromagnetic and saturated magnetic properties of polyester fabrics coated with Ag/kaolin/silica nanocomposites. (2018)
  37. - M. Brazlauskas, S. Kitrys. CHINESE. J. CATAL. 29, 25, (2008)
  38. - D. Nath, F. Singh, R. Das. MATER. CHEM. PHYS. 239, 122021, (2020)
  39. - C. Covarrubias, F. Gracia, H. Palza. APPL. CATAL. A-GEN. 384, 186, (2010)
  40. - NB. Castagnola, PK. Dutta. Russ. J. Phys. Chem. 102, 1696, (1998)
  41. - ML. Kantam, BP. Rao, BM. Choudary, KK. Rao, B. Sreedhar, Y. Iwasawa, T. Sasaki. J. MOL. CATAL. A-CHEM. 252, 76, (2006)
  42. - MI. Din, F. Arshad, A. Rani, A. Aihetasham, M. Mukhtar, H. Mehmood. J. Biomed. Mater. 9, 41, (2017)
  43. - M. Salavati-Niasari, A. Sobhani. J. MOL. CATAL. A-CHEM. 285, 58, (2008)
  44. - A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi. APPL. CATAL. A-GEN. 477, 83, (2014)
  45. - G. Tegge.. Hirayama, K. Handbook of Ultraviolet and Visible Absorption Spectra of Organic Compounds (Handbuch der ultravioletten und sichtbaren Spektra organischer Verbin‐dungen). Starch‐Stärke, (1968)
  46. - R. Saadi, Z. Saadi, R. Fazaeli, N. ElmiFard. KOREAN. J. CHEM. ENG. 32, 787, (2015)

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP