JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 65 No 1 (2020): Journal of the Chilean Chemical Society
Original Research Papers

CHITOSAN AND PECTATE BIOPARTICLES MADE FROM ORANGE ALBEDO. ADSORPTION OF COPPER (II)

Yasna León
Universidad Santo Tomás
Published February 5, 2020
Keywords
  • Chitosan,
  • Pectate Bioparticles,
  • SEM
How to Cite
Ulloa, B., Tapia, E., Arias, M., & León, Y. (2020). CHITOSAN AND PECTATE BIOPARTICLES MADE FROM ORANGE ALBEDO. ADSORPTION OF COPPER (II) . Journal of the Chilean Chemical Society, 65(1), 4664-4667. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/1336

Abstract

The investigation herein reports on the development of bioparticles by mixing calcium pectate with chitosan in order to chelate Cu+2 from water polluted with heavy metals. Calcium pectate was used to synthesize these bioparticles. The pectate was obtained from orange albedo, which was in turn obtained from shredded and dry biomass, treated with an acidulated solution in order to eliminate the pectin (Ps). The first treatment given to the biomass was with a sodium hydroxide solution (NaOH), in order to de-methoxylate the pectin. Subsequently, the biomass was treated with ethyl alcohol and calcium hydroxide (Ca(OH)2) to a temperature of 80 - 90°C, to renew the pectin. This improved the mechanical stability that this constituent requires. Experimental results of the Cu+2 ions are expressed as a withholding rate percentage in time.

yasna.jpg

References

  1. K. Santhana, et al, Chem. Eng. J. 211, 396 (2012)
  2. D. Lalhmunsiama, S. Tiwari, M. Lee, Environ. Eng. Res. 17,41 (2012)
  3. S. Lee, D. Lalhmunsiama, S. Tiwari, Chem. Eng. J. 270, 496 (2015)
  4. N. Montaño, Revista Internacional de Contaminación Ambiental, 31, 211 (2015)
  5. G. Walker, L.Weatherley, Water Research, 31, 2093 (1997)
  6. G. Crini, P. Badot, Progress in Polymer Science, 33, 399 (2008)
  7. C. Tejada, A. Villabona, L. Garcés, Tecno Lógicas, 18, 109 (2015)
  8. L. Zhou, Y. Wang, Z. Liu, Q. Huang, Journal of Hazardous Materials, 161, 995 (2009)
  9. E. Azzam, et al., International Journal of Biological Macromolecules, 89, 507 (2016)
  10. Y. Kim, L.Wicker, Advances in Biopolymers, ACS, 935, 230 (2006)
  11. Y. Kim, L. Wicker, Food Hydrocolloids, 25, 419 (2011)
  12. H. Lee et al., Journal of the Science of Food and Agriculture, 88, 2102 (2008)
  13. J. Jung, R. Arnold, L. Wicker. Colloids Surf B Biointerfaces, 104, 116 (2013)
  14. Y. León, G. Cárdenas, M. Arias, J. Chim.Chem.Soc, 62, 3661 (2017)
  15. P. Castaldi, G. Lauro, C. Senette, S. Deiana, Plant Physiology and Biochemistry, 48, 1008 (2010)
  16. G. Morris, M. Kok, S. Harding, G. Adams, Biotechnol. Genet. Eng., 27, 257 (2010)
  17. F. Munarin, et al., Biomacromolecules. 12, 568 (2011)
  18. Y. Mata, M. Blazquz, A. Ballester, F. González, J. Muñoz, Chemical Engineering Journal, 150, 289, (2009)
  19. S. Aleksandrovich, S. Vladimirovna, O. Vladimirovna, Journal of Molecular Liquids, 283, 606 (2019)
  20. P. Smrdel, M. Bogataj, A. Mrhar, Sci. Pharm, 76, 77 (2008)
  21. B. Gyurcik, L. Nagy, Coord. Chem. Rev, 203, 81 (2000)
  22. S. Cataldo, A. Gianguzza, A. Pettignano, I. Villaescusa, Reactive& Functional Polymers, 73, 207 (2013)
  23. V. Dronnet, C.Renard, M. Axelos, J. Thibault, Barbohydr. Polym., 30, 253 (1996)

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP