JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 64 No 3 (2019): Journal of the Chilean Chemical Society
Original Research Papers

BLENDS OF POLY(VINYL PYRIDINE)S AND DIHYDRIC PHENOLS: THERMAL AND INFRARED SPECTROSCOPIC STUDIES. PART V

Nicolás Gatica
Department of Polymers, Faculty of Chemical Sciences, University of Concepción
Francisco Medina
Department of Polymers, Faculty of Chemical Sciences, University of Concepción
Constanza Moraga
Department of Polymers, Faculty of Chemical Sciences, University of Concepción
Loreto Vergara
Department of Polymers, Faculty of Chemical Sciences, University of Concepción
Published October 30, 2019
Keywords
  • Polymer blends,
  • poly(vinylpyridine)s,
  • low molecular weight compounds,
  • hydrogen bond,
  • miscibility
How to Cite
Gatica, N., Medina, F., Moraga, C., & Vergara, L. (2019). BLENDS OF POLY(VINYL PYRIDINE)S AND DIHYDRIC PHENOLS: THERMAL AND INFRARED SPECTROSCOPIC STUDIES. PART V. Journal of the Chilean Chemical Society, 64(3), 4575-4581. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/1323

Abstract

Binary blends with poly(4-vinyl pyridine) (P4VPy) 160,000 g/mol and poly(2-vinyl pyridine) (P2VPy) 159,000 g/mol as polymer components and 4,4´-thiodiphenol (TDP), 4,4´-methylendiphenol (MDP), 2,2´-biphenol (22BP) and 4,4´-biphenol (44BP) as low molecular weight compounds (LMWCs), were prepared. Miscibility between the components was analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM) were also used as complementary techniques. Hydrogen bonding formation was detected by FTIR due to the increasing of the wave number corresponding to the deformation absorption of pyridine groups in P4VPy and P2VPy. A decreasing of melting points and fusion heats of the LMWCs is observed by DSC, which shows a lower crystallinity level as the blends are richer in the polymer component as a consequence of the intermolecular interaction. A plasticizing effect is also observed by DSC when P4VPy is blended with TDP and MDP; the higher steric hindrance prevents this effect when P2VPy is blended with 22BP and 44BP. Miscible blends were obtained with a moderate trend to a higher interaction degree in blends containing P4VPy. This report is the fifth part of a series of works including polymer-LMWC blends. Variables such as molecular weight increase in P4VPy and steric hindrance in P2VPy have been comparatively analyzed with blends previously reported.

1411.jpg

References

1. G. Belorgey, R. E. Prud’Homme, J. Polym. Sci. Polym. Phys. 20, 191, (1982).

2. M. M. Coleman, A. W. Lichkus, P. C. Painter, Macromolecules 22, 586, (1989).

3. M. Rocha, Rev. Plást. Mod. 440, 149, (1993).

4. H. Mok Lee, O. Ok Park, J. Rheol. 38, 1405, (1994).

5. R. Kirk, D. Othmer, “Encyclopedia of Chemical Technology”, John Wiley & Sons, 4th Edition, vol. 7, p. 349; vol. 19, p. 1108 (1993).

6. J. Areizaga, M. Milagros Cortázar, J. Elorza, J. Iruin, “Polímeros”, Síntesis S. A., Madrid, Spain, chapter 12 (2002).

7. A. Taha, M. Magida, E. Shehata, J. Appl. Polym. Sci. 126, 1822, (2012).

8. J. He, F. Liu, Y. Luo, D. Jia, J. Appl. Polym. Sci. 126, 1527, (2012).

9. Z. Yang, K. Nollenberger, J. Albers, D. Craig, S. Qi, Mol. Pharmaceutics 10, 2767, (2013).

10. S. Djellali, T. Sadoun, N. Haddaoui, A. Bergeret, Polym. Bull. 72, 1177, (2015).

11. E. Laredo, D. Newman, R. Pezzoli, A. J. Müller, A. Bello, J. Polym. Sci. Polym. Phys. 54, 680, (2016).

12. J. Y. Lee, P. C. Painter, M. M. Coleman, Macromolecules 21, 346, (1988).

13. D. J. T. Hill, A. K. Whittaker, K. W. Wong, Macromolecules 32, 5285, (1999).

14. M. Urzúa, L. Gargallo, D. Radic´, J. Appl. Polym. Sci. 84, 1245, (2002).

15. L. T. Lee, E. M. Woo, J. Polym. Sci. Polym. Phys. 44, 1339, (2006).

16. J. Kratochvíl, A. Šturcová, A. Sikora, J. Dybal, J. Polym. Sci. Polym. Phys. 49, 1031, (2011).

17. E. Zuza, A. Lejardi, E. Meaurio, J. R. Sarasua, Eur. Polym. J. 63, 58, (2015).

18. S. Vicini, M. Castellano, E. Princi, Polym. Bull. 72, 743, (2015).

19. A. Lejardi, J. R. Sarasua, A. Etxeberria, E. Meaurio, J. Polym. Sci. Polym. Phys. 54, 1217, (2016).

20. E. S. Lopes, E. Domingos, R. S. Neves, W. Romão, K. R. de Souza, R. Valaski, B. S. Archanjo, F. G. Souza Jr., A. M. Silva, A. Kuznetsov, J. R. Araujo, Eur. Polym. J. 85, 588, (2016).

21. S. Matsushima, A. Takano, Y. Matsushita, J. Polym. Sci. Polym. Phys. 55, 1791, (2017).

22. G. Singh, H. Bhunia, A. Rajor, V. Choudhary, Polym. Bull. 66, 939, (2011).

23. M. Hazarika, T. Jana, Eur. Polym. J. 49, 1564, (2013).

24. D. Wu, W. Li, Y. Hao, Z. Li, H. Yang, H. Zhang, H. Zhang, L. Dong, Polym. Bull. 72, 851, (2015).

25. M. N. Tamaño-Machiavello, B. Bracke, C. M. Costa, S. Lanceros- Mendez, R. Sabatier i Serra, J. L. Gómez, J. Polym. Sci. Polym. Phys. 54, 672, (2016).

26. G. Liu, G. Qiu, Polym. Bull. 70, 849, (2013).

27. R. Avolio, R. Castaldo, G. Gentile, V. Ambrogi, S. Fiori, M. Avella, M. Cocca, M. E. Errico, Eur. Polym. J. 66, 533, (2015).

28. K. Zhang, Q. Zhang, H. Zhang, J. Shen, Q. Niu, R. Xia, Macromol. Chem. Phys. 219, 1700527, (2018).

29. H. T. Oyama, Y. Tanaka, S. Hirari, S. Shida, A. Kadosaka, J. Polym. Sci. Polym. Phys. 49, 342, (2011).

30. R. Kirk, D. Othmer, “Encyclopedia of Chemical Technology”, John Wiley & Sons, 4th Edition, vol. 2, p. 18; vol. 3, p. 435 (1993).

31. X. Wang, Y. Zhuang, L. Dong, J. Appl. Polym. Sci. 126, 1876, (2012).

32. L. Silva, S. Tognana, W. Salgueiro, J. Polym. Sci. Polym. Phys. 51, 680, (2013).

33. M. J. Mochane, A. S. Luyt, Polym. Bull. 72, 2263, (2015).

34. T. P. Gumede, A. S. Luyt, R. A. Pérez-Camargo, A. Iturrospe, A. Arbe, M. Zubitur, A. Mugica, A. J. Müller, J. Polym. Sci. Polym. Phys. 54, 1469, (2016).

35. Y. J. Chen, A. Huang, T. Ellingham, C. Chung, L. S. Turng, Eur. Polym. J. 98, 262, (2018).

36. G. Carini Jr., G. Carini, G. D’Angelo, M. Federico, G. Di Marco, A. Bartolotta, J. Polym. Sci. Polym. Phys. 56, 340, (2018).

37. A. H. Suzuki, B. G. Botelho, L. S. Oliveira, A. S. Franca, Eur. Polym. J. 99, 142, (2018).

38. G. Y. Liu, L. P. Lv, C. J. Chen, X. F. Hu, J. Ji, Macromol. Chem. Phys. 212, 643, (2011).

39. L. Garber, N. Jingar, R. Rosario-Meléndez, K. E. Uhrich, J. Polym. Sci. Polym. Phys. 53, 685, (2015).

40. H. Wang, Y. Wu, G. Liu, Z. Du, X. Cheng, Macromol. Chem. Phys. 217, 2004, (2016).

41. M. Szabó, B. Berke, K. László, Z. Osváth, A. Domján, Eur. Polym. J. 93, 750, (2017).

42. F. M. Rabagliati, M. Saavedra, P. Galvez, D. A. Canales, G. P. Orihuela, P. A. Zapata, H. G. Cárdenas, Polym. Bull. 75, 415, (2018).

43. A. E. Mercado-Pagán, Y. Kang, D. F. E. Ker, S. Park, J. Yao, J. Bishop, Y. P. Yang, Eur. Polym. J. 49, 3337, (2013).

44. S. More, R. Dhokne, S. Moharil, Polym. Bull. 75, 909, (2018).

45. A. Hayder, A. Hussain, A. N. Khan, H. Waheed, Polym. Bull. 75, 1197, (2018).

46. A. Al-Mulla, K. Alfadhel, G. Qambar, H. Shaban, Polym. Bull. 70, 2599, (2013).

47. A. Woz´niak-Braszak, K. Jurga, G. Nowaczyk, M. Dobies, M. Szostak, J. Jurga, S. Jurga, Eur. Polym J. 64, 62, (2015).

48. D. Garcia-Garcia, E. Rayón, A. Carbonell-Verdu, J. Lopez-Martinez, R. Balart, Eur. Polym. J. 86, 41, (2017).

49. A. Rigoussen, P. Verge, J. M. Raquez, Y. Habibi, P. Dubois, Eur. Polym. J. 93, 272, (2017).

50. N. Gatica, N. Alvarado, D. Sepúlveda, J. Chil. Chem. Soc. 51, 945, (2006).

51. N. Gatica, N. Alvarado, J. Chil. Chem. Soc. 54, 317, (2009).

52. N. Gatica, O. Monares, J. Chil. Chem. Soc. 55, 399, (2010).

53. N. Gatica, L. Soto, C. Moraga, L. Vergara, J. Chil. Chem. Soc. 58, 2048, (2013).

54. M. A. Llorente, A. Horta, “Técnicas de caracterización de polímeros”, UNED Ediciones, Madrid, Spain, chapter 5 (1991).

55. L. Cesteros, Revista Iberoamericana de Polímeros 5, 111, (2004).

56. J. Li, Y. He, Y. Inoue, J. Polym. Sci. Polym. Phys. 39, 2108, (2001).

57. Y. He, N. Asakawa, Y. Inoue, Macromol. Chem. Phys. 202, 1035, (2001).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP