JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 64 No 3 (2019): Journal of the Chilean Chemical Society
Original Research Papers

INCORPORATION OF AU AND AG NANOSTRUCTURES INSIDE SIO2

C. Díaz
Departamento de química, Universidad de Chile
A. M. L. Valenzuela
Universidad Autónoma de Chile, Instituto de Ciencias Químicas Aplicadas, Inorganic Chemistry and Molecular Material Center
K. Soto
Departamento de Química, Facultad de Química, Universidad de Chile
M. A. Laguna-Bercero
Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC- Universidad de Zaragoza
Published October 30, 2019
Keywords
  • Gold nanoparticles,
  • Silver nanoparticles,
  • silica,
  • composites
How to Cite
Díaz, C., Valenzuela, A. M. L., Soto, K., & Laguna-Bercero, M. A. (2019). INCORPORATION OF AU AND AG NANOSTRUCTURES INSIDE SIO2. Journal of the Chilean Chemical Society, 64(3), 4502-4506. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/1311

Abstract

Incorporation of Au° inside SiO2 was achieved by a solid-state method from the pyrolysis of the composites (Chitosan)•(AuCl3)n•(SiO2)m and (PS-co-4-PVP)•(AuCl3)n•(SiO2)m Similarly, the incorporation of Ag° inside SiO2 it was made from thermal treatment of the composites (Chitosan)•(AgNO3)n•(SiO2)m and (PS-co-4-PVP)•(AgNO3)n•(SiO2)m. The nature of the polymer controls the particle size for the Au/SiO2 composite, while that for the Ag/SiO2 both, polymer Chitosan and PS-co-4-PVP, produces similar particle size. In the case of the composite Ag/SiO2 the particle size as small as 5 nm were obtained.
The 1:1 or 1:5 metal/polymer ratios, as well as the nature of the polymer in the macromolecular precursors (Chitosan)•(AuCl3)n•(SiO2)m and (PS-co-4-PVP)•(AuCl3)n•(SiO2)m influences the dispersion of the Au° nanostructures inside SiO2 matrix. The results are compared with those previously obtained for bimetallic composites Au/Ag//SiO2. A formation mechanism of the Au°/SiO2 and Ag°/SiO2 composites involving the combustion of the organic matter and the growth of the Au° and Ag° nanoparticles inside the holes, generated from the combustion process, is proposed.

224.jpg

References

1. Xiao-Feng Yang, A. Wang, B. Qiao, J. Li, J.Liu, T. Zhang, Acc. Chem Res. 46, 1740, (2013).

2. J.M. Campelo, D. Luna, R. Luque, J.M. Marinas, A.A. Romero, ChemSusChem, 2, 18, (2009).

3. Sh.Liu, M-Y Han, Chem. Asian J., 5, 36-45, (2010).

4. J.R.A. Sietsma, J.D. Meeldijk, J.P. den Breejen, M.Versluijs-Helder, A.Jos van Dillen, P.E. de Jongh, K.P. De Jong, Ang.Chem Int. Ed., 46, 4547, (2007).

5. G.Schmid, B. Corain Eur. Inorg. Chem. 3081, (2003).

6. Robin J. White, Rafael Luque,* Vitaliy L. Budarin, James H. Clark, Chem. Soc. Rev., 38, 481, (2009).

7. M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett., 2, 405, (1987).

8. Masatake Haruta, Catalysis Today, 36, 153, (1997).

9. G. Martra, L. Prati, C. Manfredotti, S. Biella, M. Rossi, S. Coluccia, J. Phys. Chem. B, 107, 5453, (2003).

10. Rodolfo Zanella, Alberto Sandoval, Patricia Santiago, Vladimir A. Basiuk, Jose M. Saniger, J. Phys. Chem. B, 110, 8559, (2006).

11. Boks of American Scientific Publishers, Encyclopedia of Nanoscience and Nanotechnology, H.S Nalwa Editor, American Scientific Publishers, Volume 16, Chapter 232, C.Díaz and M.L. Valenzuela Chapter 2010, 16, 239-256.

12. M.P. Pileni, Accounts Chem. Res., 40, 685, (2007).

13. M. P. Pileni, J. Mat. Chem. 21, 16748, (2001).

14. Y. F.,Wan, N. Goubet, P. A, Albouy, M.P. Pileni, Langmuir, 29, 7456, (2013).

15. Catalina Marambio-Jones • Eric M. V. Hoek, J Nanopart Res, 12, 1531, (2010).

16. Kelly de O. Santos, Welman C. Elias, Aline M. Signori, Fernando C. Giacomelli, Hong Yang, Josiel B. Domingos, J. Phys. Chem. C, 116, 4594−4604, (2012).

17. Yuning Li, Yiliang Wu, and Beng S. Ong, J. Am. Chem. Soc. , 127, 3266, (2005).

18. Michele Pittol , Daiane Tomacheski , Douglas Naue Simões, Vanda Ferreira Ribeiro, Ruth Marlene Campomanes Santana, Braz. Arch. Biol. Technol. 61, e18160667, (2018).

19. Zhong-Jie Jiang, Chun-Yan Liu, Lu-Wei Sun, J. Phys. Chem. B, 109, 1730, (2005).

20. H. Granbohm, J. Larismaa, S., L.-S. Johansson and S-P. Hannula, Materials, 11, 80, (2018).

21. S. Thomas, S. K. Nair, E. Muhammad Abdul Jamal, S. H. Al-Harthi, M. Raama Varma M. R. Anantharaman, Nanotechnology 19, 075710 (7pp), (2008).

22. C. Díaz, M. L. Valenzuela,D. Carrillo, J. Riquelme , R. Díaz, J. Inorg Organomet Polym 22,1101–1112,(2012).

23. C Díaz, M.L.Valenzuela, M.A Laguna-Bercero, A. Orera, D. Bobadilla, S. Abarca, O. Peña, RSC Advances, 7, 27729, (2017).

24. C. Diaz, L. Barrientos, D. Carrillo, J. Valdebenito, M.L. Valenzuela, P. Allende, H. Geaneye C.O'Dwyer, New Journal of Chemistry 40 ,6769-6776. (2016).

25. C. Diaz, M.L. Valenzuela, R. Baez, M. Segovia, J. Chil. Chem.Soc. 60, 2986, (2015).

26. C. Diaz, M.L. Valenzuela, C. Rios, M. Segovia, J. Chil. Chem.Soc. 61, 3014, (2016).

27. C. Diaz, M.L. Valenzuela, Daniela Bobadilla M.A. Laguna-Bercer, J.Cluster Science, 28, 2809, (2017).

28. C. Diaz, M. L.Valenzuela, M. Segovia, K. Correa, R. de la Campa, A. Presa Soto, J.Cluster Science, 29, 251, (2018).

29. C. Wang, L. Chen, Zhiwen Qi, Catal. Sci. Technol., 3, 1123, (2013).

30. S. Pal, P.De, Material Research Bulletin 44,355 (2009).

31. C. Díaz, M.L. Valenzuela,V. Lavayen, C. O’Dwyer Inorganic Chem., 51, 6228, (2012).

32. C. Díaz, M.L. Valenzuela L. Zuñiga, C. O’Dwyer J Inorg and Organometallic Polym 19, 507, (2009).

33. L.A. Pretzerr, Q.X.Nguyen, M.S.Wong J. Phys. Chem. C, 114, 21226, (2010).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP