JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 61 No 4 (2016): Journal of the Chilean Chemical Society
Original Research Papers

EFFECT OF THE SELENIUM CONTENT IN THE OPTICAL PROPERTIES OF THE KESTERITE Cu2ZnSnS4-XSeX PHASES

F. López Vergara
Departamento de Química,Facultad de Ciencias, Universidad de Chile
A. Galdámez
Departamento de Química,Facultad de Ciencias, Universidad de Chile
P. Barahona
Facultad de Ciencias Básicas, Universidad Católica del Maule,
V. Manríquez
Departamento de Química,Facultad de Ciencias, Universidad de Chile
Published December 10, 2016
How to Cite
López Vergara, F., Galdámez, A., Barahona, P., & Manríquez, V. (2016). EFFECT OF THE SELENIUM CONTENT IN THE OPTICAL PROPERTIES OF THE KESTERITE Cu2ZnSnS4-XSeX PHASES. Journal of the Chilean Chemical Society, 61(4). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/129

Abstract

Polycrystalline Cu2ZnSnS4-XSeX (X=1, 2, 3) compounds were synthesized by conventional solid-state reactions. The samples were characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray analysis (SEM-EDS), Raman spectroscopy, diffuse reflectance UV-vis and Photoluminescence. All of phases crystallize in the tetragonal kesterite-type structure. The powder X-ray diffraction (XRD) patterns were indexed in the space group . No secondary phases were detected in XRD patterns. The results from diffuse reflectance show band gap between 1.26 - 1.17 eV, when S is gradually replaced by Se. The PL spectrum of Cu2ZnSnS4-xSex phases shows nearly symmetrical band, which shifted linearly to the lower energy with increasing Se content. The selenized (CZTSSe) phases are promising candidates to be used as absorbing material in solar cells.

References

  1. H. Katagiri, Thin Solid Films, 426,480–481 (2005).
  2. K. Ito and T. Nakazawa, Jpn. J. Appl. Phys. 27, 2094 (1988).
  3. K. Jimbo, R. Kimura, S. Yamada, W. S. Maw, H. Araki, K. Oishi, and H. Katagiri, Thin Solid Films, 515, 5997 (2007).
  4. M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, and E. Mellikov, Phys. Stat. Sol. (a) 205, No. 1, 167–170 (2008).
  5. S. Delbos, EPJ Photovoltaics 3, 35004 (2012).
  6. A. Walsh, S. Chen, S-H. Wei and X-G. Gong, Adv. Energy Mater., 2, 400–409 (2012).
  7. Todorov, T.; Kita, M.; Carda, J.; Escribano, P., Thin Solid Films, 517, 2541–2544 (2009).
  8. Yeh, M. Y.; Lee, C. C.; Wuu, D. S., J. Sol-Gel Sci. Technol., 52, 65–68 (2009).
  9. Seol, J. S.; Lee, S. Y.; Lee, J. C.; Nam, H. D.; Kim, K. H., Sol. Energy Mater. Sol. Cells, 75, 155–162 (2003).
  10. Kishore Kumar, Y. B.; Suresh Babu, G.; Uday Bhaskar, P.; Sundara Raja, V., Sol. Energy Mater. Sol. Cells, 93, 1230–1237 (2009).
  11. X. Song, X. Ji, M. Li, W. Lin, X. Luo, H. Zhang, Int. J. Photoenergy, 1–11 (2014).
  12. Chet Steinhagen, Matthew G. Panthani, Vahid Akhavan, Brian Goodfellow, Bonil Koo, and Brian A. Korgel, J. AM. CHEM. SOC., 131, 12554–12555 (2009).
  13. Katagiri, H.; Jimbo, K.; Maw, W. S.; Oishi, K.; Yamazaki, M.; Araki, H.; Takeuchi, A., Thin Solid Films, 517, 2455 (2009).
  14. Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C. L.; To, B.; Noufi, R., Prog. PhotoVoltaics, 16, 235 (2008).
  15. Wadia, C.; Alivisatos, A. P.; Kammen, D. M., Environ. Sci. Technol.,43, 2072 (2009).
  16. J. Zhong, Z. Xia, C. Zhang, B. Li, X. Liu, Y-B. Cheng, and J. Tang, Chem. Mater., 26, 3573−3578 (2014).
  17. Repins, I.; Beall, C.; Vora, N.; DeHart, C.; Kuciauskas, D.; Dippo, P.; To, B.; Mann, J.; Hsu, W.-C.; Goodrich, A.; Noufi, R., Sol. Energy Mater. Sol. Cells, 101, 154−159 (2012).
  18. Shin, B.; Gunawan, O.; Zhu, Y.; Bojarczuk, N. A.; Chey, S. J.; Guha, S., Prog. Photovoltaics: Res. Appl., 21, 72−76 (2013).
  19. W-C. Yang, C. K. Miskin, C. J. Hages, E. C. Hanley, C. Handwerker, E. A. Stach and R. Agrawal, Chem. Mater., 26, 3530−3534 (2014).
  20. Miskin, C. K.; Yang, W.-C.; Hages, C. J.; Carter, N. J.; Joglekar, C. S.; Stach, E. A.; Agrawal, R., Prog. Photovoltaics: Res. Appl., 2472 (2014).
  21. Guo, Q.; Ford, G. M.; Yang, W.-C.; Hages, C. J.; Hillhouse, H. W.; Agrawal, R., Sol. Energy Mater. Sol. Cells, 105, 132−136 (2012).
  22. Hages, C. J.; Levcenco, S.; Miskin, C. K.; Alsmeier, J. H.; Abou-Ras, D.; Wilks, R. G.; Bär, M.; Unold, T.; Agrawal, R., Prog. Photovoltaics: Res. Appl., 2442 (2013).
  23. F. López-Vergara, A. Galdámez, V. Manríquez, P. Barahona, O. Peña, J. Solid State Chem. 198, 386-391 (2013).
  24. F. López-Vergara, A. Galdámez, V. Manríquez, P. Barahona, O. Peña, Phys. Status Solidi 251, 958-964 (2014).
  25. F. López-Vergara, A. Galdámez, V. Manríquez, Guillermo González, Solid State Sciences, 49, 54-60 (2015).
  26. Chen, S.; Walsh, A.; Yang, J.-H.; Gong, X. G.; Sun, L.; Yang, P.-X.; Chu, J.-H.; Wei, S.-H., Phys. Rev. B, 83, 125201 (2011).
  27. Fontane, X.; Calvo-Barrio, L.; Izquierdo-Roca, V.; Saucedo, E.; Perez- Rodriguez, A.; Morante, J. R.; Berg, D. M.; Dale, P. J.; Siebentritt, S., Appl. Phys. Lett., 98, 181905 (2011).
  28. H. Matsushita, T. Maeda, A. Katsui, and T. Takizawa, J. Cryst. Growth, 208, 416 (2000).
  29. K. Tanaka, Y. Miyamoto, H. Uchiki, K. Nakazawa, and H. Araki, Phys. Stat.Sol. (a) 203, 2891 (2006).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP