JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 61 No 4 (2016): Journal of the Chilean Chemical Society
Original Research Papers

MECHANISTIC STUDY OF A RUTHENIUM HYDRIDE COMPLEX OF TYPE [RuH(CO)(N-N)(PR3)2]+ AS CATALYST PRECURSOR FOR THE HYDROFORMYLATION REACTION OF 1-HEXENE

Sergio A. Moya
Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile
Mauricio Yáñez
Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile
Catalina Pérez
Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile
Rosa López
Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile
César Zúñiga
Centro de Nanociencias Aplicadas (CENAP), Facultad de Ciencias Exactas, Universidad Andres Bello
Gloria Cárdenas Jirón
Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile
Published December 10, 2016
Keywords
  • DFT,
  • Hydroformylation,
  • Ruthenium,
  • Homogeneous catalysis
How to Cite
Moya, S. A., Yáñez, M., Pérez, C., López, R., Zúñiga, C., & Cárdenas Jirón, G. (2016). MECHANISTIC STUDY OF A RUTHENIUM HYDRIDE COMPLEX OF TYPE [RuH(CO)(N-N)(PR3)2]+ AS CATALYST PRECURSOR FOR THE HYDROFORMYLATION REACTION OF 1-HEXENE. Journal of the Chilean Chemical Society, 61(4). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/127

Abstract

The catalytic activity of systems of type [RuH(CO)(N-N)(PR3)2]+ was evaluated in the hydroformylation reaction of 1-hexene. The observed activity is ex­plained through a reaction mechanism on the basis of the quantum theory. The mechanism included total energy calculations for each of the intermediaries of the elemental steps considered in the catalytic cycle. The deactivation of the catalyst precursors takes place via dissociation of the polypyridine ligand and the subse­quent formation of thermodynamically stable species, such as RuH(CO)3(PPh3)2 and RuH3(CO)(PPh3)2, which interrupt the catalytic cycle. In addition, the theoreti­cal study allows to explain the observed regioselectivity which is defined in two steps: (a) the hydride migration reaction with an anti-Markovnikov orientation to produce the alkyl-linear-complex (3.1a), which is more stable by 19.4 kJ/mol than the Markovnikov orientation (alkyl-branched-complex) (3.1b); (b) the carbon monoxide insertion step generates the carbonyl alkyl-linear specie (4.1a) which is more stable by 9.5 kJ/mol than the alternative species (4.1b), determining the preferred formation of heptanal in the hydroformylation of 1-hexene. 

References

  1. - J. Norinder, C. Rodrigues, A. Börner, J. Mol. Catal. A: Chem. 391, 139, (2014).
  2. - M. Madalska, P. Lönnecke, E. Hey-Hawkins, J. Mol. Catal. A: Chem. 383, 137, (2014).
  3. - B. Cornils, W. A. Herrmann, Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Two Volumes. 2nd ed.; Wiley, VCI-1-Weinhcim, New York: Basel: Cambridge: Tokyo, 1996.
  4. - K. Saikia, B. Deb, D. K. Dutta, J. Mol: Catal. A: Chem. 381, 188, (2014).
  5. - S. Chen, Y. Wang, W. Yao, X. Zhao, G. VO-Thanh, Y. Liu, J. Mol. Catal. A. 378, 293, (2013).
  6. - Y. Ohtsuka, O. Kobayashi, T. Yamakawa, J. Fluor. Chem. 161, 34, (2014).
  7. - S. Chen, Y. Wang, Y. Li, X. Zhao, Y. Liu, Catalysis Communications. 50, 5, (2014).
  8. - R. Luo, H. Liang, X. Zheng, H. Fu, M. Yuan, R. Li, H. Chen, Catalysis Communications. 50, 29, (2014).
  9. - R. A. Sánchez-Delgado, J. S. Bradley, G. Wilkinson, J. Chem. Soc. Dalton Trans. 399, 399, (1976).
  10. - R. A. Sánchez-Delgado, N. Valencia, R. Márquez-Silva, A. Andriollo, M. Medina, Inorg. Chem. 25, 1097, (1986).
  11. - C. U. Pittman, G. M. Wilemon, J. Org. Chem. 46, 1901, (1981).
  12. - V. K. Srivastava, R. S. Shukla, H. C. Bajaj, R. V. Jasra, J. Mol. Catal. A: Chem. 202, 65, (2003).
  13. - M. A. Moreno, M. Haukka, A. Turunen, T. A. Pakkanen, J. Mol. Catal. A: Chem. 240, 7, (2005).
  14. - L. Oresmaa, M. A. Moreno, M. Jakonen, S. Suvanto, M. Haukka, Applied Catalysis A General. 353, 113, (2009).
  15. - T. Mitsudo, N. Susuki, T. Kondo, Y. Watanabe, J. Mol. Catal. A: Chem. 109, 219, (1996).
  16. - M. A. Moreno, M. Haukka, M. Kailinen, T. A. Pakkanen, Appl. Organometal. Chem. 20, 51, (2006).
  17. - J. G. Haasnoot, W. Hinrichs, O. Weir, J. G. Vos, Inorg. Chem. 25, 4140, (1986).
  18. - M. Yáñez, J. Guerrero, P. Aguirre, S. A. Moya, G. Cárdenas-Jirón, J. Organomet. Chem. 694, 3781, (2009).
  19. - J. Ahmad, J. J. Levison, S. D. Robinson, M. F. Uttley, Inorg. Synth. 15, 45, (1974).
  20. - A. D. Becke, Phys. Rev. A. 38(6), 3098, (1988).
  21. - A. D. Becke, J. Chem. Phys. 98(7), 5648, (1993).
  22. - S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58(8), 1200, (1980).
  23. - C. Lee, W. Yang, R. G. Parr, Phys. Rev. B. 37(2), 785, (1988).
  24. - P. J. Hay, W. R. Wadt, J. Chem. Phys. 82(1), 299, (1985).
  25. - TITAN 1.0.8 Wavefunction, Inc. and Schrödinger Inc. 18401 and Von Karman Avenue, Suite 370, Irvine, CA 92612 USA.
  26. - Jaguar 6.5, Schrödinger Inc., Portland, OR, (2005).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP