JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 64 No 4 (2019): Journal of the Chilean Chemical Society
Original Research Papers

INDUCTION OF C-MYC G-QUADRUPLEX DNA AND CYTOTOXICITY OF A CALIX[4]ARENE-CONTAINING BINUCLEAR RUTHENIUM(II) COMPLEX

Ya-Xuan Mi
Hebei University
Shuang Wang
Hebei University
Shuang-Mei Yan
Hebei University
Yue Cui
Hebei University
Ming-He Wang
Hebei University
Ze-bao Zheng
Taishan University
Xiao-Long Zhao
Hebei University
Published December 18, 2019
Keywords
  • Ruthenium,
  • c-myc G-quadruplex DNA,
  • Topoisomerase,
  • Cytotoxicity.
How to Cite
Mi, Y.-X., Wang, S., Yan, S.-M., Cui, Y., Wang, M.-H., Zheng, Z.- bao, & Zhao, X.-L. (2019). INDUCTION OF C-MYC G-QUADRUPLEX DNA AND CYTOTOXICITY OF A CALIX[4]ARENE-CONTAINING BINUCLEAR RUTHENIUM(II) COMPLEX. Journal of the Chilean Chemical Society, 64(4), 4639-4644. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/1260

Abstract

Herein, a binuclear ruthenium(II) complex modified by calix[4]arene group has been prepared. The complex as potential inducer and stabilizer of c-myc G-quadruplex DNA and antitumor reagent were studied. Observations revealed that the complex could bind to c-myc Pu27 and Pu22 DNA strongly with constants of 1.18 × 107 (Pu27) and 4.13 × 106 M-1 (Pu22) via groove mode as determined from absorption and luminescence titrations, as well as CD spectra. Results of continuous variation analysis confirmed that the complex interacted with c-myc G-quadruplex DNA through a 1:1 binding stoichiometry. As verified by PCR-stop assay, the replication of c-myc DNA was effectively blocked by the complex with the complete inhibition at the complex concentration of 4.0 μM both for Pu27 and Pu22, suggesting that the complex could efficiently induce the formation of c-myc G-quadruplex DNA. The appearance of blue TMB solution in the visual experiment also proved that the sequences of Pu27 and Pu22 could fold into G-quadruplex under the induction of the complex. Nevertheless, the complex was found to exhibit weak stabilization ability on c-myc G-quadruplex DNA according to FRET assay, which increased the melting point of c-myc DNA only 3-3.5 °C. The experiments on Topoisomerase inhibition and cytotoxicity of the complex showed that it acted as an inhibitor of TopoI and exhibited moderate anticancer activity against MCF-7 and Huh-7 tumor cells.

 

Graph_12.jpg

References

  1. D. Saadallah, M. Bellakhal, S. Amor, J.F. Lefebvre, M. Chavarot-Kerlidou, I. Baussanne, C. Moucheron, M. Demeunynck, D. Monchaud, Chem. Eur. J. 23, 4967–4972, (2017)
  2. G. Piraux, L. Bar, M. Abraham, T. Lavergne, H. Jamet, J. Dejeu, L. Marcélis, E. Defrancq, B. Elias, Chem. Eur. J. 23, 11872–11880, (2017)
  3. J. Rubio-Magnieto, S. Kajouj, F.D. Meo, M. Fossépré, P. Trouillas, P. Norman, M. Linares, C. Moucheron, M. Surin, Chem. Eur. J. 24, 15577–15588, (2018)
  4. J. Weynand, A. Diman, M. Abraham, L. Marcélis, H. Jamet, A. Decottignies, J. Dejeu, E. Defrancq, B. Elias, Chem. Eur. J. 24, 19216–19227, (2018)
  5. S. Rickling, L. Ghisdavu, F. Pierard, P. Gerbaux, M. Surin, P. Murat, E. Defrancq, C. Moucheron, A.K.D. Mesmaeker, Chem. Eur. J. 16, 3951–3961, (2010)
  6. V. Brabec, J. Kasparkova, Coord. Chem. Rev. 376, 75–94, (2018)
  7. M. Pal, U. Nandi, D. Mukherjee, Eur. J. Med. Chem. 150, 419–445, (2018)
  8. J.P. Liu, Z. Chen, T.W. Rees, L.B. Ke, L.N. Ji, H. Chao, Coord. Chem. Rev. 363, 17–28, (2018)
  9. G.L. Liao, X. Chen, J.H. Wu, C. Qian, Y. Wang, L.N. Ji, H. Chao, Dalton Trans. 44, 15145–15156, (2015)
  10. X. Chen, J.H. Wu, Y.W. Lai, R. Zhao, H. Chao, L.N. Ji, Dalton Trans. 42, 4386–4397, (2013)
  11. S.Y. Zhang, Q. Wu, H. Zhang, Q. Wang, X.C. Wang, W.J. Mei, X.H. Wu, W.J. Zheng, J. Inorg. Biochem. 176, 113–122, (2017)
  12. H.J. Yu, Y. Zhao, W.J. Mo, Z.F. Hao, L. Yu, Spectrochim. Acta. A: Mol. Biomol. Spectrosc. 132, 84–90, (2014)
  13. E.H. Blackburn, Nature 350, 569–573, (1991)
  14. A. Siddiqui-Jain, C.L. Grand, D.J. Bearss, L.H. Hurley, Proc. Natl. Acad. Sci. USA 99, 11593–11598, (2002)
  15. D. Sen, W. Gilbert, Nature 334, 364–366, (1988)
  16. M.C. Hammond-Kosack, B. Dobrinski, R. Lurz, K. Docherty, M.W. Kilpatrick, Nucleic Acids Res. 20, 231–236, (1992)
  17. Y. Dai, G. Wilson, B. Huang, M. Peng, G. Teng, D. Zhang, R. Zhang, M.P.A. Ebert, J. Chen, B.C.Y. Wong, K.W. Chan, J. George, L. Qiao, Cell Death Dis. 5, e1170, (2014)
  18. Y. Yamada, H. Hidaka, N. Seki, H. Yoshino, T. Yamasaki, T. Itesako, M. Nakagawa, H. Enokida, Cancer Sci. 104, 304–312, (2013)
  19. L. Hassani, Z. Fazeli, E. Safaei, H. Rastegar, M. Akbari, J. Biol. Phys. 40, 275–283, (2014)
  20. Q. Wu, K.D. Zheng, S.Y. Liao, Y. Ding, Y.Q. Li, W.J. Mei, Organometallics 35, 317–326, (2016)
  21. L. Li, H.M. Liu, X.K. Liu, S.Y. Liao, Y.T. Lan, Q. Wu, X.C. Wang, Q. Wang, S.Y. Zhang, W.J. Mei, RSC Adv. 7, 23727–23734, (2017)
  22. Z. Zhang, Q. Wu, X.H. Wu, F.Y. Sun, L.M. Chen, J.C. Chen, S.L. Yang, W.J. Mei, Eur. J. Med. Chem. 80, 316–324, (2014)
  23. Y. Liu, Y.N. Liu, L.C. Yang, C.W. Cao, Y.H. Zhou, J. Liu, Med. Chem. Commun. 5, 1724–1728, (2014)
  24. Z. Zhang, X.H. Wu, F.Q. Sun, F. Shan, J.C. Chen, L.M. Chen, Y.S. Zhou, W.J. Mei, Inorg. Chim. Acta 418, 23–29, (2014)
  25. Z. Zhang, W.J. Mei, X.H. Wu, X.C. Wang, B.G. Wang, S.D. Chen, J. Coord. Chem. 68, 1465–1475, (2015)
  26. L. Scaglioni, R. Mondelli, R. Artali, F.R. Sirtori, S. Mazzini, BBA-Gen. Subjects 1860, 1129–1138, (2016)
  27. T. Lemarteleura, D. Gomeza, R. Paterskia, E. Mandineb, P. Maillietb, J. Rioua, Biochem. Bioph. Res. Co. 323, 802–808, (2004)
  28. C. Rajput, R. Rutkaite, L. Swanson, I. Haq, J.A. Thomas, Chem. Eur. J. 12, 4611–4619, (2006)
  29. C.P. Zheng, Y.N. Liu, Y. Liu, X.Y. Qin, Y.H. Zhou, J. Liu, J. Inorg. Biochem. 156, 122–132, (2016)
  30. K. Suntharalingam, A.J.P. White, R. Vilar, Inorg. Chem. 49, 8371–8380, (2010)
  31. Q.Y. Huang, Y.F. Han, Z.B. Zheng, Chinese J. Inorg. Chem. 34, 217-229, (2018)
  32. Q. Wu, T.F. Chen, Z. Zhang, S.Y. Liao, X.H. Wu, J. Wu, W.J. Mei, Y.H. Chen, W.L. Wu, L.L. Zeng, W.J. Zheng, Dalton Trans. 43, 9216–9225, (2014)
  33. A. Ghosh, P. Das, M.R. Gill, P. Kar, M.G. Walker, J.A. Thomas, A. Das, Chem. Eur. J. 17, 2089–2098, (2011)
  34. S. Mardanya, S. Karmakar, D. Mondal, S. Baitalik, Inorg. Chem. 55, 3475–3489, (2016)
  35. J.N. Zhang, Q.Q. Yu, Q. Li, L.C. Yang, L.M. Chen, Y.H. Zhou, J. Liu, J. Inorg. Biochem. 134, 1–11, (2014)
  36. H.Q. Zhao, X.X. Xu, S. Wang, Y.X. Mi, Z.B. Zheng, X.L. Zhao, Transit. Metal Chem. 43, 539–548, (2018),
  37. D.D. Sun, Y.N. Liu, D. Liu, R. Zhang, X.C. Yang, J. Liu, Chem. Eur. J. 18, 4285–4295, (2012)
  38. L. Xu, X. Chen, J.H. Wu, J.Q. Wang, L.N. Ji, H. Chao, Chem. Eur. J. 21, 4008–4020, (2015)
  39. Q. Li, J.N. Zhang, L.C. Yang, Q.Q. Yu, Q.C. Chen, X.Y. Qin, F.L. Le, Q.L. Zhang, J. Liu, J. Inorg. Biochem. 130, 122–129, (2014)
  40. S.N. Georgiades, N.H. Abd Karim, K. Suntharalingam, R. Vilar, Angew. Chem. Int. Ed. 49, 4020–4034, (2010)
  41. W. Streciwilk, A. Terenzi, X.L. Cheng, L. Hager, Y. Dabiri, P. Prochnow, J.E. Bandow, S. Wӧlfl, B.K. Keppler, I. Ott, Eur. J. Med. Chem. 156, 148–161, (2018)
  42. Q. Wu, S.Y. Liao, G.N. Yu, J. Wu, W.J. Mei, J. Inorg. Biochem. 189, 81–90, (2018)
  43. K. Duskova, S. Sierra, M.S. Arias-Pérez, L. Gude, Bioorg. Med. Chem. 24, 33–41, (2016)
  44. R. Gaur, M. Usman, Spectrochim. Acta. A: Mol. Biomol. Spectrosc. 209, 100-108, (2019)
  45. G.L. Ma, X.D. Bi, F. Gao, Z. Feng, D.C. Zhao, F.G. Lin, R. Yan, D.D. Liu, P. Liu, J.B. Chen, H.B. Zhang, J. Inorg. Biochem. 185, 1-9, (2018)
  46. Y.C. Wang, C. Qian, Z.L. Peng, X.J. Hou, L.L. Wang, H. Chao, L.N. Ji, J. Inorg. Biochem. 130, 15–27, (2014)

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP