JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 61 No 4 (2016): Journal of the Chilean Chemical Society
Original Research Papers

OXIDATION FACILITY BY A TEMPERATURE DEPENDENCE ON THE METAL NOBLE NANOSTRUCTURED M°/MxOy PHASE PRODUCTS USING A SOLID STATE METHOD: THE CASE OF Pd

Carlos Díaz
Departamento de Química, Facultad de Ciencias, Universidad de Chile
María Luisa Valenzuela
Universidad Autónoma de Chile, Instituto de Ciencias Químicas Aplicadas, Inorganic Chemistry and Molecular Materials Center
Cristian Rios
Departamento de Química, Facultad de Ciencias, Universidad de Chile
Marjorie Segovia
Departamento de Química, Facultad de Ciencias, Universidad de Chile
Published December 10, 2016
How to Cite
Díaz, C., Valenzuela, M. L., Rios, C., & Segovia, M. (2016). OXIDATION FACILITY BY A TEMPERATURE DEPENDENCE ON THE METAL NOBLE NANOSTRUCTURED M°/MxOy PHASE PRODUCTS USING A SOLID STATE METHOD: THE CASE OF Pd. Journal of the Chilean Chemical Society, 61(4). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/125

Abstract

Pyrolysis at 800°C under air of the macromolecular precursor Chitosan●(PdCl2)n and PS-co-4-PVP●(PdCl2)n in solid state afford the mixture phases Pt/PdO depending on the molar ratio metal /polymer. For the 1:1 Chitosan●(PdCl2)n and PS-co-4-PVP●(PdCl2)n precursors the pure phase PdO was obtained while that for another molar ratios 1:5 and 1:10, the mixture phase Pt/PdO were obtained. For the 1:10 PS-co-4-PVP●(PdCl2)n precursor the core/shell PdO@Pd nanoparticles as small as 4 nm were observed. Optical properties for the PdO indicate an insulator behavior.

References

  1. Book of CRC Concise Encyclopedia of Nanotehnology B.I. Kharisov, O.V. Kharisov and U. Mendez, Editores, Taylor and Francsi/CRC Press. Chapter 42, C. Diaz and M.L. Valenzuela 504-524, (2016).
  2. L.H.Ahrens “Ionization Potentials: Some variations Implications and Applications” Elsevier (2013).
  3. M. Tchalplyguine , M-H. Mikkkela, Ch. Zhang , T. Anderson and O. Bjorneholm J. Phys. Chem. C. 119, 8937-8943, (2015).
  4. D.A. Alonso, C.Wajero. Chem Soc. Rev. 39, 2891, (2010).
  5. J.G. de Vries, J.C.S. Dalton Trans 421, (2006).
  6. C. Dıaz Valenzuela, M. L. Valenzuela, S. Cáceres, R. Diaz and C. O’Dwyer, Materials Chemistry and Physics 143, 124-132 (2013) and references herein.
  7. I.Favier, E. Teuma, M. Gomez C.R.Chemie 12, 533-545, (2009).
  8. D. Jose, B.R. Jagirdar. J Solid Chem. 183, 2059-2067, (2010).
  9. J. Hernadez-Pineda, J.M. Del Rio, E.Garreto, E. Terres, J.A Montoya, M. J. Zuñiga-Gonzalez, J Morgado, J All Comp.481, 526-530, (2009).
  10. A.Ramafrishnan, K .Dumbuya, J.Ofili, H.P.Steinruck, J.M.Gottfried, W.Schwiegger. Appl Clay Science. 51, 8-14, (2011).
  11. K.Wang, T.Huang, H.Liu, Y.Zhao, H.Liu, C.Sun. Colloids and Surface A: Physicochem Eng Aspects 325, 21-25, (2008).
  12. C.Altavilla, E.Ciliberto, “Inorganic Nanoparticles” CRC Press Taylor and Francis, Boca Rton New York; (2011).
  13. C.N.Rao, A.Muller, A. K.Cheetham. The Chemistry of Nanomaterials. Wiley–VCH, (2006).
  14. C. Díaz, M.L. Valenzuela. “Metallic Nanostructures Using Oligo and Polyphosphazenes as Template or Stabilizer in Solid State” in Encyclopedia of Nanoscience and Nanotechnology, H.S Nalwa Ed., American Scientific Publishers. 16, 239-256 (2010).
  15. E.C.Walter, K.Ng, M.P.Zach, R.M.Penner, F.Favier. Microelectronic Enginerring 61-62, 555-561, (2002).
  16. G.Walkers, I.P. Parkin. J Mater Chem.19, 574-590, (2009).
  17. C.A.Scott. Adv Mater.21, 1-30, (2010).
  18. B.Teo, X.Sun. Chem Rev.107,1454-1532 (2010).
  19. G.B.Khomutov, V.V.Kislov, M.N.Antipina, R.V.Gainutdinov, S.P.Gubin, A.Y.Obydenov, S.A.Pavlov, A.A.Rakhnyanskaya, A.N.Sergeev- Cherenkov, E.S.Soldatov, D.B.Suyatin, A.L.Toltikhina, A.S.Trifonov, T.V.Yurova. Microelectronic Engineering 69: 373-383, (2003).
  20. H. Gleiter, Th. Schimmel , H. Hahn. Nano Today 9, 17-68, (2014).
  21. C. Diaz, M.L. Valenzuela, D. Bobadilla, J. Chilean Chemical Society 58, 1194-1997, (2013).
  22. M.P. Pileni. Accounts Chem. Res.40, 685-693, (2007).
  23. M.P. Pileni. J. Mat. Chem.21, 16748-16758, (2011).
  24. Y.F. Wan, N.Goubet, P.A.Albouy, M.P. Pileni. Langmuir 29, 7456-7463, (2013).
  25. C. Díaz, M. L. Valenzuela, R. Baez and M. Segovia. J. Chilean Chemical Society 60, 2986-2990, (2015).
  26. C. Diaz, L. Barrientos, D. Carrillo, J. Valdebenito, M.L. Valenzuela, P. Allende, H. Geaneye and C.O’Dwyer. .New Journal of Chemistry 40, 6769-6776, (2016).
  27. B.C.Tappan, M.H. Huynh, M.A. Hiskey, D.E. Chavez, E.P. Luther, J.T. Mang and F.Son. J. Am. Chem. Soc. 128, 6589-6594, (2006).
  28. Y. Kang, X. Ye and C. Murray. Angew. Chem. Int. Ed. 49, 6156-6159, (2010).
  29. S. Choudhury, R. Sasikala, V. Saxena, D. Kumar-Aswalb and D. Bhattacharyac. Dalton Trans, 41, 12090–12095, (2012).
  30. P.O. Nilsson and M.S. Shivaraman. J. Phys. C: Solid State Phys. 12, 1423- 1427 (1979).
  31. F. Ling, O. Chika Anthony, Q. Xiong, M. Luo,X. Pan, L. Jia, J. Huang, D. Sun, Q. Li. International journal o f hydrogen energy 41, 6115 -6122, (2016).
  32. T. Tsubomura, H. Murota, K. Takao. Inorganic Chemistry Communications 35, 110–112, (2013).
  33. T. Ohno, S. Izumi, K. Fujihara, M. Matsumura. Journal of Photochemistry and Photobiology A: Chemistry. 129, 143–146, (1999).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP