JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 61 No 4 (2016): Journal of the Chilean Chemical Society
Original Research Papers

NEW APPROACH FOR DETERMINATION OF FLUMEQUINE AND OXOLINIC ACID IN AQUEOUS SAMPLES BY IONIC LIQUID-BASED DISPERSIVE LIQUID-LIQUID MICROEXTRACTION AND HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY–FLUORESCENCE DETECTION

Carla Toledo Neira
Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile
Manuel A. Bravo
Laboratorio de Química Analítica y Ambiental, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso
Alejandro Álvarez Lueje
Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile
Published December 10, 2016
How to Cite
Toledo Neira, C., Bravo, M. A., & Álvarez Lueje, A. (2016). NEW APPROACH FOR DETERMINATION OF FLUMEQUINE AND OXOLINIC ACID IN AQUEOUS SAMPLES BY IONIC LIQUID-BASED DISPERSIVE LIQUID-LIQUID MICROEXTRACTION AND HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY–FLUORESCENCE DETECTION. Journal of the Chilean Chemical Society, 61(4). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/123

Abstract

A rapid and sensitive analytical method for the determination of oxolinic acid and flumequine in aqueous samples based on dispersive liquid-liquid microextraction using ionic liquids (ILs) was developed. Based on the structural properties of the antibiotic agents studied, two ILs with different functionalities were required: ethyl-dimethyl-(2-methoxyethyl) ammonium tris(pentafluoroethyl)trifluorophosphate ([MOEDEA][FAP]) for extraction and 1-butyl-3- methylimidazolium tetrafluoroborate ([BMIM][BF4]) to adjust the polarity of the medium. The significant experimental factors involved in DLLME were identified and optimized using the experimental design methodology. A Plackett-Burman design was initially used for screening, and a central composite design was used for optimization. The optimized method exhibited good precision, with relative standard deviation values of less than 5 % and limits of detections on the order of 0.1 and 0.3 ng mL-1 for the two drugs. The enrichment factors for both antibiotics were 13–33 fold. The proposed method was applied to the analysis of the two antibiotic in spiked surface, river, and wastewater samples.

References

  1. - C. Yao, T. Li, P. Twu, W.R. Pitner, J.L. Anderson, J. Chromatogr. A 1218,
  2. , (2011).
  3. - EPA Workgroup (2008) White paper: aquatic life criteria for contaminants
  4. of emerging concern.
  5. - M.J. García-Galán, M. Silvia Díaz-Cruz, D. Barceló, TrAC-Trend Anal.
  6. Chem. 27, 1008, (2008).
  7. - V. Andreu, C. Blasco, Y. Picó, TrAC-Trend Anal. Chem. 26, 534, (2007).
  8. - A.V. Herrera-Herrera, J. Hernández-Borges, T.M. Borges-Miquel, M.Á.
  9. Rodríguez-Delgado, Electrophoresis 31, 3457, (2010).
  10. - L. Norambuena, N. Gras, S. Contreras, Mar. Pollut. Bull. 73, 154, (2013).
  11. - H.T. Lai, J.J. Lin, Chemosphere 75, 462, (2009).
  12. - M.M. Parrilla Vázquez, P. Parrilla Vázquez, M.M. Martínez Galera, M.D.
  13. Gil García, Anal. Chim. Acta 748, 20, (2012).
  14. - H. Yan, H. Wang, X. Qin, B. Liu, J. Du, J. Pharm. Biomed. Anal. 54, 53,
  15. (2011).
  16. - S. Montesdeoca Esponda, M.E. Torres Padrón, Z. Sosa Ferrera, J.J.
  17. Santana Rodríguez, Anal. Bioanal. Chem. 394, 927, (2009).
  18. - F.J. Lara, M. del Olmo-Iruela, A.M. García-Campaña, J. Chromatogr. A.
  19. , 91, (2013).
  20. - E. Turiel, G. Bordin, A.R. Rodríguez, J. Chromatogr. A 1008, 145,
  21. (20013).
  22. - M. Gros, S. Rodríguez-Mozaz, D. Barceló, J. Chromatogr. A 1292, 173,
  23. (2013).
  24. - R. Celano, A.L. Piccinelli, L. Campone, J. Chromatogr. A 1355, 26,
  25. (2014).
  26. - W.H. Tsai, H.Y. Chuang, H.H. Chen, J.J. Huang, H.C. Chen, S.H. Cheng,
  27. T.C. Huang, Anal. Chim. Acta 656, 56, (2009).
  28. - J.M. Storey, S.B. Clark, A.S. Johnson, W.C. Andersen, S.B. Turnipseed,
  29. J.J. Lohne, R.J Burger, P.R. Ayres, J.R. Carr, M.R. Madson,. J.
  30. Chromatogr. B. 972, 38, (2014).
  31. - F. Pena-Pereira, I. Lavilla, C. Bendicho, TrAC-Trend Anal. Chem. 29, 617,
  32. (2010).
  33. - P. Sun, D.W. Armstrong, Ionic liquids in analytical chemistry. Anal. Chim.
  34. Acta 661, 1, (2010).
  35. - F. Maya, B. Horstkotte, J.M. Estela, V. Cerdà, TrAC-Trend Anal. Chem.
  36. , 1, (2014).
  37. - C. Mahugo-Santana, Z. Sosa-Ferrera, M.E. Torres-Padrón, J.J. Santana-
  38. Rodríguez, TrAC-Trend Anal. Chem. 30, 731, (2011).
  39. - C. Toledo-Neira, A. Álvarez-Lueje. Talanta 134, 619, (2015).
  40. - L. Ruiz-Aceituno, M.L. Sanz, L. Ramos, TrAC-Trend Anal. Chem. 43,
  41. , (2013).
  42. - A.V. Herrera-Herrera, J. Hernández-Borges, T.M. Borges-Miquel, M.Á.
  43. Rodríguez-Delgado, J. Pharm. Biomed. Anal. 75, 130, (2013).
  44. - S.C. Cunha, A. Pena, J.O. Fernandes, J. Chromatogr. A 1414, 10, (2015).
  45. - A. Junza, N. Dorival-García, A. Zafra-Gómez, D. Barrón, O. Ballesteros,
  46. J. Barbosa, A. Navalón, J. Chromatogr. A 1356, 10, (2014).
  47. - Q. Zhou, H. Bai, G. Xie, J. Xiao, J. Chromatogr. A 1188, 148, (2008).
  48. - J.N. Sun, J. Chen, Y.P. Shi, Talanta 125, 329, (2014).
  49. - H. Wu, J.B. Guo, L.M. Du, H. Tian, C.J. Hao, Z.F. Wang, J.Y. Wang,
  50. Food Chem. 141, 182, (2013).
  51. - J. Zhang, H. Gao, B. Peng, S. Li, Z. Zhou, J. Chromatogr. A 1218, 6621,
  52. (2011).
  53. - Y. Xiao., H. Chang, A. Jia, J Hu, J. Chromatogr. A 1214, 100, (2008).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP