JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 64 No 2 (2019): Journal of the Chilean Chemical Society
Original Research Papers

HUMAN EXPOSURE ASSESSMENT TO MERCURY THROUGH HAIR ANALYSIS IN COASTAL VILLAGES OF THE VALPARAISO REGION (CHILE)

Manuel A. Bravo
Laboratorio de Química Analítica y Ambiental, Instituto de Química, Pontificia Universidad Católica de Valparaíso
Sonnia Parra
Laboratorio de Química Analítica y Ambiental, Instituto de Química, Pontificia Universidad Católica de Valparaíso
Waldo Quiroz
Laboratorio de Química Analítica y Ambiental, Instituto de Química, Pontificia Universidad Católica de Valparaíso
Alexander Neaman
Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso
Published July 25, 2019
Keywords
  • Mercury concentration,
  • Human hair,
  • Fish consumption

Abstract

In the present study, we assessed mercury exposure of residents of different sites of Valparaiso Region (Chile) due to fish consumption and atmospheric contamination from coal-burning power plant and copper smelter. Total mercury concentration was determined in 199 hair samples and in 14 species of marine fish, purchased in the supermarket or collected in the studied fishing villages. The total mercury (THg) concentrations ranged from 0.04 to 1.78 μg g-1 in human hair samples and from 0.04 to 3.87 μg g-1 in fish samples. Importantly, hair mercury concentration was significantly higher in the case of population exposed to mercury exclusively by fish consumption (e.g. Quintay and Zapallar), in comparison to the residents exposed to industrial emissions and fish consumption (e.g. Puchuncavi, Las Ventanas, Quintero). Finally, high mercury concentrations were observed in fish types commonly consumed by the residents of the fishing villages, evidencing human exposure to mercury through fish consumption.

References

  1. ATSDR. (1999). Agency for Toxic Substances and Disease Registry. Toxicological Profile for Mercury. U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA.
  2. Baeyens, W., Leermakers, M., Papina, T. 2003. Bioconcentration and Biomagnification of Mercury and Methylmercury in North Sea and Scheldt Estuary Fish. Arch. Envriron Contam Toxicol. 45 (4), 498–508.
  3. Black, F., Bokhutlo, T., Somoxa, A., Maethamako, M. 2011. The tropical African mercury anomaly: Lower than expected mercury concentrations in fish and human hair. Sci. Total Environ. 409(10), 1967–1975.
  4. Beckers, F, and J Rinklebe. 2017. Cycling of Mercury in the Environment: Sources, Fate and Human Health Implications: A Review. Rev. Environ. Sci. Technol. 47.
  5. Bernalte, E., Salmanighabeshi, S., Rueda-Holgado, F., Palomo, C., Pinilla E., Cereceda-Balic, F. 2015. Mercury Pollution Assessment in Soils Affected by Industrial Emissions Using Miniaturized Ultrasonic Probe Extraction and ICP-MS. Inter.J. Environ. Sci. and Tech. (12), 817–826.
  6. Bruhn, C., Rodriguez, A., Barrios, C., Jaramillo, V., Becerra, J. 1994. Determination of total mercury in scalp hair of pregnant and nursing women resident in fishing villages in the Eighth Region of Chile. J. Trace Elem Electrolytes Health. 2, 79–86.
  7. Bruhn, C. et al., 1995. Mercurio en el cabello de embarazadas y madres lactantes chilenas. Bol Oficina Sanit Panam. 119 (5), 405–414.
  8. Boening, D., Rodriguez, A., Barrios, C. 2000. Ecological effects, transport, and fate of mercury: a general review. Chemosphere. 40, 1335–1351.
  9. Brodzka, R., 2009. Mercury in hair. An indicator of environmental exposure. Medycyna Pracy. 60 (4), 303-314.
  10. Chen, Q., Li, J., Chen, B., Wen, C., Yang, Q. 2016. An overview of mercury emissions by global fuel combustion: The impact of international trade. Renewable and Sustainnable Energy Reviews. 65, 345–355.
  11. Cheng, J., Gao, L., Zhao, W., Sakamoto, M. 2009. Mercury levels in fi sherman and their household members in Zhoushan, China: Impact of public health. Sci. Total Environ. 407 (8), 2625–2630.
  12. Chien, L., Gao, C. & Lin, H., 2010. Hair mercury concentration and fish consumption: Risk and perceptions of risk among women of childbearing age. Environ. Research, 110 (1), 123–129.
  13. Díez, S., Montuori, P., Pagano, A., Sarnacchiaro, P., Bayona, J. 2008. Hair mercury levels in an urban population from southern Italy: Fish consumption as a determinant of exposure. Environmental Intertational. 34 (2), 162–167.
  14. Díez, S., Esbrì, J., Tobias, A., Higueras, P., Martinez, A. 2011. Determinants of Exposure to Mercury in Hair from Inhabitants of the Largest Mercury Mine in the World. Chemosphere, 84 (5) 571-577.
  15. Domanico, F., Forte, G., Majorani, C., Senofonte, O.2017. Determination of mercury in hair: Comparison between gold amalgamation-atomic absorption spectrometry and mass spectrometry. J. Trace Elements in Medicine and Biology. 43, 3–8.
  16. Dryżałowska, A. & Falandysz, J., 2014. Bioconcentration of mercury by mushroom Xerocomus chrysenteron from the spatially distinct locations: Levels, possible intake and safety. Ecotoxicology and Environmental Safety. 107, 97–102.
  17. Esteban, M., Schindler, B., Jimenez, J., et al., 2015. Mercury analysis in hair: Comparability and quality assessment within the transnational COPHES/DEMOCOPHES project. Environ Resear.141, 24–30.
  18. Fu, X., Zhu, W., Feng, X., Lu, J.2008. Total particulate and reactive gaseous mercury in ambient air on the eastern slope of the Mt. Gongga area, China. Applied Geochemistry. 23, 408–418, 23.
  19. Fu, X., Feng, X., Qiu, G., Shang, L., Zhang, X. 2011. Speciated atmospheric mercury and its potential source in Guiyang, China. Atmospheric Environment. 45(25), 4205–4212.
  20. Gibb, H., O`Leary, K., Sarkar, S., Wang, J., Liguori, L.2016. Hair mercury concentrations in residents of Sundarban and Calcutta, India. Environmental Research, 150, 616–621.
  21. Li, X., Wang, Z., 2007. Determination of mercury by intermittent flow electrochemical cold vapor generation coupled to atomic fluorescence spectrometry. Analytica Chimica Acta. 588 (2), 179–183.
  22. Li, Z., Wang, Q. & Luo, Y., 2006. Exposure of the urban population to mercury in Changchun city, Northeast China. Environmental Geochemistry and Health. 28 (1-2), 61–66.
  23. Mailman, M., Stepnuk, C., Cicek, N. 2006. Strategies to lower methyl mercury concentrations in hydroelectric reservoirs and lakes: A review. Sci. Total Environ. 368 (1), 224–235.
  24. Marcinek, M., Albinska, J., Pawlaczyk, A., Szynkowska, M.2017. The impact of demographic factors, behaviors and environmental exposure to mercury content in the hair of the population living in the region of Lodz (central Poland). Environmental Toxicology and Farmacology. 55, 196–201.
  25. Marín, S., Pardo, O., Baguena, R., Font, G., Yusa, V. 2017. Dietary exposure to trace elements and health risk assessment in the region of Valencia, Spain: a total diet study. Food Additives & Contaminants. 34, 228–240.
  26. Mcdowell, M., Dillon, C., Osterloh, J., Bolguer, P., Pellizzari, E. 2004. Hair Mercury Levels in U. S. Children and Women of Childbearing Age: Reference Range Data from NHANES 1999 – 2000. Environ Health Perspect. 112 (11), 1165-1171.
  27. MINSALUD. 2018. Diario oficial de la República de Chile. Ministerio de Interior y Seguridad Pública.
  28. NRC, 2000. Toxicological Effects of Methylmercury.
  29. Oken, E., Wright, R., Kleinman, K., Bellinger, D. 2005. Maternal Fish Consumption, Hair Mercury, and infant cognition in a U. S. Cohort. Environmental Health Perspect. 113 (10) 1376–1380.
  30. Parra, S., Bravo, M., Quiroz, W., Moreno, T., Karanasiou, A., Font, O. 2014. Distribution of trace elements in particle size fractions for contaminated soils by a copper smelting from different zones of the Puchuncaví Valley. Chemosphere, 111, 513–521.
  31. Rueda-holgado, F., Calvo, L., Cereceda-Balic, F., Pinilla, E.2016. Chemosphere Temporal and Spatial Variation of Trace Elements in Atmospheric Deposition around the Industrial Area of Puchuncaví-Ventanas (Chile) and Its Influence on Exceedances of Lead and Cadmium Critical Loads in Soils. Chemosphere, 144: 1788–96.
  32. Shao, D., Kang, Y., Cheng, Z., Wang, H., Huang, M. 2013. Hair Mercury Levels and Food Consumption in Residents from the Pearl River Delta: South China. Food Chemistry. 136 (2), 682–688.
  33. UNEP (United Nations Environment Programme). 2002. Global Mercury Assessment, Geneva, Switzerland.
  34. USEPA, 2010. Guidance for Implementing the January 2001 Methylmercury Water Quality Criterion. EPA 823-R-10-001. US Environmental Protection Agency, Office of Water, Washington, DC.
  35. Watras, C., Back, R., Halvorsen, S., Hudson, R., Morrison, K.1998. Bioaccumulation of mercury in pelagic freshwater food webs. Science of The Total Environment. 219, 183–208.
  36. World Health Organization (WHO) (2004): Technical Report Series 922. Sixty-first report of the Joint FAO/WHO Expert Committee on Food Additives (JEFCA), 133.
  37. Xu, L., Chen, J., Niu, Z., Yin, L., Chen, Y. 2013. Characterization of mercury in atmospheric particulate matter in the southeast coastal cities of China. Atmospheric Pollution Research 4 (4), 454–461.
  38. Yáñez, J., Guajardo, M., Miranda, C., Soto, C., Mansilla, H., Rusell, A.c2013. New assessment of organic mercury formation in highly polluted sediments in the Lenga estuary, Chile. Marine Pollution Bulletin, 73(1), 16–23.
  39. Yusa, V., Pérez, R., Suelves, T., Corpas-Burgos, F. 2017. Biomonitoring of mercury in hair of breastfeeding mothers living in the Valencian Region (Spain). Levels and predictors of exposure. Chemosphere, 187, 106–113.
  40. Zahir, F., Rizwi, J., Haq, S., Khan, R.2005. Low dose mercury toxicity and human health. Environmental Toxicology and Pharmacology. 20 (2), 351–360.
  41. Zamorano, P., Garcia, O., Bastìas, M. 2017. Arsenic, cadmium, mercury, sodium, and potassium concentrations in common foods and estimated daily intake of the population in Valdivia (Chile) using a total diet study. Food and Chemical Toxicology. 109 (2), 1125-1134.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP