Vol 64 No 2 (2019): Journal of the Chilean Chemical Society
Original Research Papers


Özgür Arar
Ege University Faculty of Science, Department of Chemistry
Published July 25, 2019
  • Anion exchange,
  • cellulose,
  • chromate,
  • quaternized cellulose,
  • water treatment
How to Cite
Arar, Özgür. (2019). PREPARATION OF ANION-EXCHANGE CELLULOSE FOR THE REMOVAL OF CHROMATE. Journal of the Chilean Chemical Society, 64(2). Retrieved from


The quaternary ammonium group containing cellulose was prepared by the one-pot method and applied for the removal of chromate (CrO42-) ions from aqueous solution. The prepared sorbent was characterized by using elemental analyzer and Fourier transform infrared (FTIR) spectroscopy. Its ion exchange behavior toward CrO42- ions was investigated as a function of sorbent dose and initial solution pH. The kinetic and sorption equilibrium experiments were also carried out in a batch system. Equilibrium data were best fitted with the Langmuir model and the maximum ion exchange capacity of the sorbent was found as 3.8 mg of CrO42-/g sorbent.

Moreover, the removal of CrO42- is achieved within 5 minutes. Furthermore, the calculated thermodynamic parameters disclosed that the ion exchange reaction is feasible, spontaneous and exothermic. In addition, the CrO4 2- ions can be desorbed from the sorbent by 1.0 M HCl solution with 95% regeneration efficiency.


  1. Z. Rawajfih and N. Nsour, J. Chem. Thermodyn. 40, 846 (2008).
  2. X. Xu, B.-Y. Gao, X. Tang, Q.-Y. Yue, Q.-Q. Zhong, and Q. Li, J. Hazard. Mater. 189, 420 (2011).
  3. L. K. Cabatingan, R. C. Agapay, J. L. L. Rakels, M. Ottens, and L. A. M. van der Wielen, Ind. Eng. Chem. Res. 40, 2302 (2001).
  4. T. Hajeeth, P. N. Sudha, K. Vijayalakshmi, and T. Gomathi, Int. J. Biol. Macromol. 66, 295 (2014).
  5. S. Kuo and R. Bembenek, Bioresour. Technol. 99, 5617 (2008).
  6. J. Sánchez, N. Mendoza, B. L. Rivas, L. Basáez, and J. L. Santiago-García, b J. Appl. Polym. Sci. 134, 45355 (2017).
  7. R. A. Anderson, Sci. Total Environ. 86, 75 (1989).
  8. J. Kotaś and Z. Stasicka, Environ. Pollut. 107, 263 (2000).
  9. W. H. Organization, Guidelines for Drinking-Water Quality (2004).
  10. J. Sánchez, B. Butter, L. Basáez, B. L. Rivas, and M. O. Thotiyl, J. Chil. Chem. Soc. 62, 3647 (2017).
  11. Y. S. Dzyazko, L. M. Rozhdestvenskaya, S. L. Vasilyuk, V. N. Belyakov, N. Kabay, M. Yuksel, O. Arar, and U. Yuksel, Chem. Eng. Commun. 196, 3 (2008).
  12. Y. S. Dzyazko, S. L. Vasilyuk, L. M. Rozhdestvenskaya, V. N. Belyakov, N. V. Stefanyak, N. Kabay, M. Yüksel, Ö. Arar, and Ü. Yüksel, Chem. Eng. Commun. 196, 22 (2008).
  13. F. Gode and E. Pehlivan, J. Hazard. Mater. 119, 175 (2005).
  14. N. Hamadi, Chem. Eng. J. 84, 95 (2001).
  15. U. Farooq, J. A. Kozinski, M. A. Khan, and M. Athar, Bioresour. Technol. 101, 5043 (2010).
  16. A. Asthana, R. Verma, A. K. Singh, and M. A. B. H. Susan, J. Environ. Chem. Eng. 4, 1985 (2016).
  17. W. Jiang, W. Wang, B. Pan, Q. Zhang, W. Zhang, and L. Lv, ACS Appl. Mater. Interfaces 6, 3421 (2014).
  18. P. Kanmani, J. Aravind, M. Kamaraj, P. Sureshbabu, and S. Karthikeyan, Bioresour. Technol. 242, 295, (2017).
  19. D. Roy, M. Semsarilar, J. T. Guthrie, and S. Perrier, Chem. Soc. Rev. 38, 2046 (2009).
  20. C. Miao and W. Y. Hamad, Cellulose, 20, 2121 (2013).
  21. H. Kargarzadeh, M. Mariano, D. Gopakumar, I. Ahmad, S. Thomas, A. Dufresne, J. Huang, and N. Lin, Cellulose, 25, 2151 (2018).
  22. R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Chem. Soc. Rev. 40, 3941 (2011).
  23. A. Pei, N. Butchosa, L. A. Berglund, and Q. Zhou, Soft Matter 9, 2047 (2013).
  24. A. Clesceri, L., Greenberg, A. & Eaton, Standard Methods for the Examination of Water and Wastewater (1999).
  25. P. Larkin, Infrared and Raman spectroscopy: principles and spectral interpretation Elsevier, San Diego, 2011.
  26. R. G. Zhbankov, Infrared spectra of cellulose and its derivatives; Springer, New York, 1995.
  27. E. Parlak and Ö. Arar, J. Dispers. Sci. Technol. 39, 1403 (2018).
  28. G. Ozkula, B. F. Urbano, B. L. Rivas, N. Kabay, and M. Bryjak, J. Chil. Chem. Soc. 61, 2752 (2016).
  29. B. Alyüz and S. Veli, J. Hazard. Mater. 167, 482 (2009).
  30. P. Liu, Y. Li, Y. Xu, Y. Qing, and C. Han, J. Chil. Chem. Soc. 63, 3819 (2018).
  31. L. V. A. Gurgel, J. C. Perin de Melo, J. C. de Lena, and L. F. Gil, Bioresour. Technol. 100, 3214 (2009).
  32. Y. A. Aydın and N. D. Aksoy, Chem. Eng. J. 151, 188 (2009).
  33. H. S. Altundogan, Process Biochem. 40, 1443 (2005).
  34. A. S. K. Kumar, S. Kalidhasan, V. Rajesh, and N. Rajesh, Ind. Eng. Chem. Res. 51, 58 (2012).
  35. B. Qiu, C. Xu, D. Sun, H. Yi, J. Guo, X. Zhang, H. Qu, M. Guerrero, X. Wang, N. Noel, Z. Luo, Z. Guo, and S. Wei, ACS Sustain. Chem. Eng. 2, 2070 (2014).
  36. K. Selvi, Bioresour. Technol. 80, 87 (2001).
  37. D. V. Morales, B. L. Rivas, and M. González, J. Chil. Chem. Soc. 61, 3295 (2016).
  38. M. Duran, Ö. Arar, and M. Arda, J. Chil. Chem. Soc. 64, 4399 (2019).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP