Vol 64 No 2 (2019): Journal of the Chilean Chemical Society
Original Research Papers


Venecia Herrera
Facultad de Ciencias de la Salud, Laboratorio de Química Analítica y Ambiental . Universidad Arturo Prat Environmental Research Center, CENIMA, Universidad Arturo Prat Research and Development Center for Water Resources, CIDERH, Universidad Arturo Prat
Cristian Carrasco
Facultad de Ciencias de la Salud, Laboratorio de Química Analítica y Ambiental . Universidad Arturo Prat Environmental Research Center, CENIMA, Universidad Arturo Prat
Paola Araneda
Environmental Research Center, CENIMA, Universidad Arturo Prat
Juan M. Sandoval
Facultad de Ciencias de la Salud, Laboratorio de Química Analítica y Ambiental . Universidad Arturo Prat
Published July 25, 2019
  • water chemistry quality,
  • geochemistry,
  • stability indexes,
  • regulations


The population of Tarapacá, northern Chile, is supplied with drinking water of underground origin. The objective of this study was to evaluate the chemical quality of water for human consumption in nine urban and rural locations and its compliance with current norms (temperature, salinity, alkalinity, dissolved majority ions, As and B). Geochemical classifications were deduced to consider the origin and relationships between waters. Moreover, five water stability indicators were evaluated to estimate potential corrositivity (B/Cl- ratio, Cl-/SO42- ratio and Larson ratio) and calcareous inlays formation (Langelier Saturation Index and Ryzman Stability Index). The samples analyzed were determined had mild temperatures, slightly alkaline, with a wide range of values of salinity (74.7 - 1287 mg L-1). The hydrogeochemical results confirmed four water types: Na+/HCO3--Cl--SO42-, Na+/SO42-, Na+-Ca2+/SO42-, and Na+-Ca2+/Cl--SO42-. The 168 samples reached 100% of the degree of compliance of NCh409, except in the wells of Colonia Pintados, where As concentration exceeded 13 to 30 times the norm. Sulphate and B exceded international standards. The water taste deterioration can be attributed to high concentrations of SO42-, Cl-, Ca2+, and B. Finally, water stability indexes determined the capacity for severe corrosively potential and formation of light calcareous deposits. The internal regulations of the country must harmonize and admit substances suggested by the WHO.


  1. E. Lictevout, C. Maass, D. Córdoba, V. Herrera and R. Payano. Recursos Hídricos Región de Tarapacá: Diagnóstico y sistematización de la información. Centro de Investigación y Desarrollo en Recursos Hídricos CIDERH, Universidad Arturo Prat, Iquique (2013).
  2. Japan International Cooperation Agency, JICA, Pacific Consultants International & Dirección General de Aguas (DGA). The study on the development of water resourses in northem Chile. Gobierno de la República de Chile, Santiago (1995).
  3. E. G. Stets, C. J. Lee, D. A. Lytle, M. R. Schock Sci Total Environ 613, 1498, (2018).
  4. A. Gholizadeh, M. Mokhtari, N. Naimi, B. Shiravand, A. Ebrahimi Groundwater for Sustainable Development 5, 59, (2017).
  5. A. Abbasnia, M. Alimohammadi, A. H. Mahvi, R. Nabizadeh, M. Mirz Data in Brief 16, 182, (2018).
  6. A. Gómez-Gutiérrez, M. J. Miralles, I. Corbella, S. García, X. Llebaria Gac Sanit 30, 63, (2016).
  7. World Health Organization (WHO). Guidelines for Drinking-Water Quality. Fourth ed. WHO Press, Geneva, Switzerland (2011).
  8. Norma Chilena de Agua Potable NCh409, Of. 78 Instituto Nacional de Normalización (INN). Ministerio de Obras Públicas. República de Chile, Santiago, Agua potable-1-Requisitos. Diario Oficial de la República de Chile, Santiago (2006).
  9. E. Custodio, M. R. Llamas. Hidrología Subterránea. Tomo I, Sección 10 Hidrogeoquímica. Omega, S.A. Segunda ed., Barcelona (2001).
  10. Métodos normalizados para el análisis del agua potable y residual. APHA, AWWA & WPCF., Ediciones Díaz de Santos, S.A. 17 ed., Barcelona (1992).
  11. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN: 3-900051-07-0. Available online at (2018).
  12. J. Drever. Geochemistry of natural waters. The: surface and groundwater environments. Prentice-Hall, Upper Saddle River. Edition 3, New Jersey (1997).
  13. J. Iqbala, Y. Nazzala, F. Howaria, C. Xaviera, A. Yousef Groundwater for Sustainable Development 7, 212, (2018).
  14. B. Mandal, K. Suzuki Talanta 58, 201, (2002).
  15. P. Mandal, S.R. Debbarma, A. Saha, B. Ruj Procedia Environmental Sciences 35, 943, (2016).
  16. V. Herrera, C. Carrasco, P. Sandoval, C. Cortés Rev Soc Quim Perú 38,52, (2017).
  17. S. Fuentes. Revista AIDIS. Capitulo chileno, Asociación Interamericana de Ingeniería Sanitaria y Ambiental. Aidis 56, 37, (2017).
  18. Norma Chilena para agua de riego y otros usos NCh1333. Instituto Nacional de Normalización INN. Ministerio de Obras Públicas. República de Chile, Santiago. Requisitos de Calidad del Agua para Diferentes Usos. Santiago (1978).
  19. M. Tanaka, T. Fujiwara Pflug Arch Eur J Phy 456, 671, (2008).
  20. S. Meacham, S. Karakas, A. Wallace, F. Altun Open Miner Process J 3, 36, (2010).
  21. M. Velázquez, J. L. Pimentel, M Ortega Rev Int Cont Amb 27, 19, (2011).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP