JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 64 No 2 (2019): Journal of the Chilean Chemical Society
Original Research Papers

BENCH-SCALE EXTRACTION OF STILBENOIDS AND OTHER PHENOLICS FROM STORED GRAPE CANES (VITIS VINIFERA): OPTIMIZATION PROCESS, CHEMICAL CHARACTERIZATION, AND POTENTIAL PROTECTION AGAINST OXIDATIVE DAMAGE

Sebastian Riquelme
Unidad de Desarrollo Tecnológico, Universidad de Concepción Departamento de Análisis Instrumental , Facultad de Farmacia, Universidad de Concepción
Vania Sáez
Departamento de Análisis Instrumental , Facultad de Farmacia, Universidad de Concepción
Danilo Escobar
Unidad de Desarrollo Tecnológico, Universidad de Concepción
Carola Vergara
Departamento de Análisis Instrumental , Facultad de Farmacia, Universidad de Concepción
Cecilia Fuentealba
Unidad de Desarrollo Tecnológico, Universidad de Concepción
Luis Bustamante
Departamento de Análisis Instrumental , Facultad de Farmacia, Universidad de Concepción
Dietrich Von Baer
Departamento de Análisis Instrumental , Facultad de Farmacia, Universidad de Concepción
Paola Jara
Departamento de Bioquímica e Inmunología, Facultad de Farmacia, Universidad de Concepción
Liliana Lamperti
Departamento de Bioquímica e Inmunología, Facultad de Farmacia, Universidad de Concepción
Claudia Mardones
Departamento de Análisis Instrumental , Facultad de Farmacia, Universidad de Concepción
Published July 25, 2019
Keywords
  • Stilbenoids,
  • Procyanidins,
  • Grape canes,
  • Bench-scale extraction,
  • Antioxidant capacity
How to Cite
Riquelme, S., Sáez, V., Escobar, D., Vergara, C., Fuentealba, C., Bustamante, L., Von Baer, D., Jara, P., Lamperti, L., & Mardones, C. (2019). BENCH-SCALE EXTRACTION OF STILBENOIDS AND OTHER PHENOLICS FROM STORED GRAPE CANES (VITIS VINIFERA): OPTIMIZATION PROCESS, CHEMICAL CHARACTERIZATION, AND POTENTIAL PROTECTION AGAINST OXIDATIVE DAMAGE. Journal of the Chilean Chemical Society, 64(2). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/1206

Abstract

Dietary supplements have become the key to complement deficiencies in the occidental diet and therefore to reduce the incidence of oxidative stress related diseases. A bench-scale extraction procedure was studied to obtain a valuable product rich in phenolic compounds and antioxidant capacity from Pinot Noir grape cane enhanced by storage. Extraction solvent, cane-size, solid:liquid ratio, temperature, and extraction time, were systematically evaluated in order to obtain a natural functional product. Complete chemical characterization of a Pinot Noir grape cane extract produced under bench scale process is presented for the first time. Phenolic profiles of the extracts were characterized by HPLC-PDA-MS/MS and minerals by ICP-OES. Proteins, carbohydrates and lignins were also evaluated. The main phenolic compounds in the final product were stilbenoids, flavan-3-ols, procyanidins, and flavonols, with 6.53%, 4.84%, 2.11%, and 0.25%, respectively on a dry matter basis. Other chemical constituents were carbohydrates (27%), minerals (1%) and lignins (38.7%). The antioxidant capacity of the product was demonstrated using chemical assays (TEACABTS/CUPRAC and ORAC-FL) and endothelial cells model. The extract produced under the described bench scale process using grape cane enhanced by storage have a chemical composition and protecting capacities to be used in functional foods industry.

References

  1. Boue SM, ClevelandTE, Carter-Wientjes C, Shih BY, BhatnagarD, McLachlanJM, BurowME. Phytoalexin-Enriched Functional Foods. J Agric Food Chem 57: 2614–2622 (2009).
  2. Diaz-Gerevini GT, Repossi G, Dain A, Tarres MC, Das UN, Eynard AR. Beneficial action of resveratrol: How and why?. Nutrition 32:174–8 (2016).
  3. Bagchi, D.; Sen, C.K.; Ray, S.D.; Das, D. Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract. Mutat Res 523–524: 87-97(2003).
  4. Lizarraga, D.; Lozano, C.; Briedé, J. J.; van Delft, J. H. The importance of polymerization and galloylation for the antiproliferative properties of procyanidin-rich natural extracts. FEBS J 274: 4802–4811 (2007).
  5. Llopiz, N.; Puiggro, F.;Céspedes, E.; Arola, L. Antigenotoxic effect of grape seed procyanidin extract in FAO cells submitted to oxidative stress. J Agric Food Chem 52: 1083–1087 (2004).
  6. Gabaston J, Cantos-Villar E,BiaisB,Waffo-TeguoP,Renouf E,Corio-Costet M, Richard T,Mérillon J. Stilbenes from Vitisvinifera L. Waste: A Sustainable Tool for Controlling PlasmoparaViticola. J Agric Food Chem 65: 2711–2718 (2017).
  7. Flamini, R.; Rosso, M. De.; Marchi, F. De. An innovative approach to grape metabolomics: stilbene profiling by suspect screening analysis, Int J Mol Sci 14:1243–1253(2012).
  8. Vergara C, Von BaerD, Mardones C,Wilkens A,Wernekinck K,Damm A, Macke S,Gorena T,Winterhalter P. Stilbene levels in grape cane of different cultivars in southern Chile: Determination by HPLC-DADMS/MS method. J Agric Food Chem 60: 929–933 (2012).
  9. Gorena, T.; Sáez, V.; Mardones, C.; Vergara, C.; Winterhalter, P.; von Baer, D. (2014). Influence of post-pruning storage on stilbenoid levels in Vitis vinifera L. canes. Food Chem 155: 256–263 (2014).
  10. Karacabey, E.; Mazza, G. Optimization of solid-liquid extraction of resveratrol and other phenolic compounds from milled grape canes (Vitisvinifera). J Agric Food Chem 56: 6318–6325 (2008).
  11. Karacabey, E.; Bayindirli, L.; Artik, N.; Mazza, G. Modeling solid-liquid extraction kinetics of trans-resveratrol and trans-ε-viniferin from grape cane. J Food ProcessEng 36: 103–112 (2013).
  12. Piñeiro, Z.; Guerrero, R. F.; Fernández-Marin, M. I.; Cantos-Villar, E.; Palma, M. Ultrasound-assisted extraction of stilbenoids from grape stems. J Agric Food Chem 61: 12549–12556 (2013).
  13. Bart, H. J. &Pilz, S. Industrial Scale Natural Products Extraction. (Wiley, 2011).
  14. Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. NREL/TP-510-42618 analytical procedure - Determination of structural carbohydrates and lignin in Biomass. https://www.nrel.gov/docs/gen/fy13/42618.pdf [2 October 2015].
  15. Ku, C. S.; Mun, S. P. Characterization of proanthocyanidin in hot wáter extract isolated from Pinus radiata bark. Wood Sci Technol 41: 235–247 (2007).
  16. Çetin, E. S.; Altinöz, D.;Tarçan, E.; GöktürkBaydar, N. Chemical composition of grape canes. Ind Crops Prod 34: 994–998 (2011).
  17. Ribeiro, J.P.N.; Magalhães, L.M.; Reis, S.; Lima, J.L.F.C.; Segundo, M. A. High-throughput total cupric ion reducing antioxidant capacity of biological samples determined using flow injection analysis and microplate-based methods. Anal Sci 27: 483–488 (2011).
  18. Karacabey, E. & Mazza, G. Optimisation of antioxidant activity of grape cane extracts using response surface methodology. Food Chem 119: 343–348 (2010).
  19. Wolfe, K.L.; Rui, H.L. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem 55: 8896–8907(2007).
  20. Brewer, L. R.; Kubola, J.; Siriamornpun, S.; Herald, T. J.; Shi, Y. C. Wheat bran particle size influence on phytochemical extractability and antioxidant properties. Food Chem 152: 483–490 (2014).
  21. Hemery, Y. M.; Anson, N. M.; Havenaar, R.; Haenen, G. R. M. M.; Noort, M. W. J.; Rouau, X. Dry-fractionation of wheat bran increases the bioaccessibility of phenolic acids in breads made from processed bran fractions. Food Res Int 43: 1429–1438 (2010).
  22. Gil, M.; González, A.; Gil, A.Evaluation of milling energy requirements of biomass residues in a semi-industrial pilot plant for co-firing. http://www.bioscale.es/wpcontent/uploads/downloads/2014/04/Evaluation-of-milling-energyrequirements-of-biomass-residues-for-cofiring.pdf [11 [16March 2016].
  23. Gabaston J, Cantos –Villar E, Biais B, Waffo-Teguo P, Renouf E, Corio-Costet M, Richard T, Mérillon J. Stilbenes from Vitisvinifera L. Waste: A Sustainable Tool for Controlling Plasmoparaviticola. J. Agric Food Chem 65: 2711-2718 (2017).
  24. Sánchez-Gómez, R.; Zalacain, A.; Alonso, G.L.; Salinas, M.R. Vine-shoot waste aqueous extracts for re-use in agriculture obtained by different extraction techniques: Phenolic, volatile, and mineral compounds. J Agric Food Chem 62: 10861–10872 (2014).
  25. Rajha, H.N.; Boussetta, N.; Louka, N.; Maroun, R.G.; Vorobiev, E. A comparative study of physical pretreatments for the extraction of polyphenols and proteins from vine shoots. Food Res Int 65: 462–468(2014).
  26. Skroza, D.; Generalić, I.; Svilović, S.; Šimat, V.;Katalinić, V. Investigation of the potential synergistic effect of resveratrol with other phenolic compounds: A case of binary phenolic mixtures. J Food Comp. Anal 38:13–18 (2015).
  27. Speisky, H.; López-Alarcón, C.; Gómez, M.; Fuentes, J.; Sandoval-Acuña, C. First web-based database on total phenolics and oxygen radical absorbance capacity (ORAC) of fruits produced and consumed within the south Andes region of South America. J.Agric Food Chem 260: 8851–8859 (2012).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP