JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 64 No 2 (2019): Journal of the Chilean Chemical Society
Original Research Papers

ATMOSPHERIC PHENOLIC DERIVATIVES AS TRACERS IN AN URBAN AREA

María A. Rubio
Faculty of Chemistry and Biology, CEDENNA, University of Santiago de Chile
Patricia Bustamante
Faculty of Chemistry and Biology, CEDENNA, University of Santiago de Chile
Yeanice Vásquez P.
Mario Molina Center
Published July 25, 2019
Keywords
  • phenolic derivatives,
  • biomass,
  • combustion tracers
How to Cite
Rubio, M. A., Bustamante, P., & Vásquez P., Y. (2019). ATMOSPHERIC PHENOLIC DERIVATIVES AS TRACERS IN AN URBAN AREA. Journal of the Chilean Chemical Society, 64(2). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/1204

Abstract

The screening of certain chemical markers associated with the burning of fuels (gasoline, diesel, firewood, pellets, and kerosene) is carried out. The studied markers correspond to phenolic compounds present in emitted gases. Identification and quantification were performed by solid phase extraction followed by highperformance liquid chromatography with diode-array detection (HPLC-DAD). The volatile phenolic derivatives detected and quantified in these experiments were phenol (Ph), 2-nitrophenol (2-NPh), 4-nitrophenol (4-NPh), o-hydroxyphenol (2-HPh), 2-methoxyphenol (2-MetPh), 4-methoxyphenol(4-MetPh) and 2,4- dinitrophenol.

The emissions from firewood- and pellet-burning heaters contain mainly o-hydroxyphenol, 4-methoxyphenol, and Ph. In the emissions from gasoline-powered vehicles, only Ph was detected, and in those of diesel-powered vehicles, only 2-NPh and 4-NPh were detected. Kerosene-burning heaters did not exhibit measurable amounts of phenolic compounds in their emissions. The controlled irradiation of the emissions from the burning of firewood and pellets using a photochemical camera showed high degrees of stability of these compounds. The studied phenolic derivatives did not photolyse or were not formed by the photochemical pathway; therefore, their origin is clearly primary, which allows their use as combustion tracers in a particular atmosphere. The presence of Ph derivatives in the Santiago atmosphere indicates the existence of mobile sources (daytime) and the use of firewood (night-time). The presence of 2-NPh and 4-NPh derivatives in the air would be strongly associated with the use of mobile sources that use diesel. In contrast, catechol is associated with the burning of wood for heating.

References

  1. Schwarzenbach R. P., Stierti R., Folsom B. R., Zeyer J. Environ. Sci. Technol. 22, 83-92, (1988.
  2. Cecinato A., Di Palo V., Pomata D., Tomasi Sciano M. C., Possanzini M. Chemosphere. 59, 679-683, (2005).
  3. Morville S., Scheyer A., Mirabel P., Millet M. Environ. Sci. Pollut. 13, 83-89, (2006).
  4. Bishop and Mitra S. Anal. Chim. Acta. 583, 10-14, (2007).
  5. Delhomme O., Morville S., Millet M. Atmos. Pollut. Res. 1, 17-22, (2010).
  6. Luttke, J., Levsen K., Acker K.,, Wieprecht W., Moeller D. Int. J. Environ. An. Ch. 74, 69-89, (1999).
  7. Leuenberger Ch., Cuzuczwa J., Tremp J. Giger, W.) Chemosphere 17, 511-515, (1988).
  8. Schuessler W., Nitschke L. Chemosphere 42, 277-283, (2001).
  9. Schummer C., Groff C., Al Cami J., Kaber F., Millet M. Sci. Total Environ. 407, (2009).
  10. Geisler A., Scholer H.F. Water Res. 28, 2047-2053, (1994).
  11. Grynkiewic Z. M., Polkowska Z., Kot-Wasik A., Namiesnik J. Polish J. Environm. Studies 11, 85-89, (2002).
  12. Richartz H., Rheischl A., Trautner F., Hutzinger O. Atmos. Environ. 24, 3067-3071, (1990).
  13. Rubio M.A., Lissi E., Herrera N., Perez V., Fuentes N. Chemosphere 86, 1035-1039, (2012).
  14. Harrison M. A., Barra S., Borghesi D., Vione D., Arsene C., Olariu R. Atmos. Environ. 39, 231-248, (2005).
  15. Bohm J.H., Feltes J., Volmer D. and K. Levsen. J. Chromatogr. 478, 399-407, (1989).
  16. Grosjean D. Sci. Total Environ. 100, 367-414, (1991).
  17. Michalowicz J. and Duda W. Pol. J. Environ. Stud. 16, (3), 347-363, (2007).
  18. Heal M., Harrison M., Cape J. N. Atmos. Environ. 41, 3515-3520, (2007).
  19. Vione D., Belmondo S., Carnino L. Environ. Chem. Lett. 2, 135-139, (2004).
  20. Patnaik P., Khoury J. Water Res. 38, 206-210, (2004).
  21. Luttke J., Scheer, V., Levsen K., Wunsch G., Cape, J., Hargreaves R., Storeton-West R. Acker K., Wieprecht W., Jones B. Atmos. Environ. 31, 2637-2648, (1997).
  22. Vione D. MaurinoV., MineroC., VincentiM., Pelizzeti E. Chemosphere 44, 237-248, (2001).
  23. Kahnt A., Behrouzi S., Vermeylen R., Safi Shalamzari M., Vercauteren J., Roekens, E., Claeys M., Maenhaut W. Atmos. Environ. 81, 561-568, (2013).
  24. Nojima K.T., Kawaguchi A., Ohya T., Kanno S., Hirobe M. Chem. Pharm. Bull. 31, 1047-1051, (1983).
  25. Tremp J., Mattrel S., Fingler S., Giger W.) Water Air Soil Poll. 68, 113-123, (1993).
  26. Perrone M., Carbone C., Faedo D., Ferrero L., Maggioni A., Sangiorgi G., Bolzacchini E. Atmos. Environ. 82, 391-400, (2014).
  27. Jolleys, M. H., Coe, G. Mc Figgans, G. Capes, J. Allan, J. Crossier, F. Williams, G. Allen, K. Bower, J. Jimenez, L. Russell, M. Grutter, D. Baumgardner. Environ. Sci. Technol. 46,(24), 13093-13103, (2012).
  28. Roldan P., E. Swietlicki, A. Massling, A. Kristensson, J. Londahl, A. Erikssson, J. Pagels, S. Gustafsson. Atmos. Chem. Phys., 11, 5897-5915, (2011).
  29. Yee L.D., Kautzman K.E., Loza C.L., Schiolling K.A., Coggon M.M., Chhabra P.S., Chan M.N., Chan A.W.H., Hersey SD.P., Crounse J.D., Wennberg P.O., Flagan R.C., Seinfeld J.D. Atmos. Chem. Phys, 13, 8019-8043, (2013).
  30. Roy M., A. Dutta, K. Corscadden. Applied Energy, 108, 298-307, (2013).
  31. Johansson L., B. Lokner, L. Gustavsson, D. Cooper, C. Tullin, A. Potter Atmos. Environ. 38, 4183-4195, (2004).
  32. Schmidl, C., M. Luisser, E. Padouvas, L. Lasselsberger, M. Rzaca, C. Ramirez-Santa Cruz, M. Handler, Ge Peng. Atmos. Environ. 45, 7443-7454, (2011).
  33. Yu, L.D., Wang, G.F., Zhang, R.J., Zhang, L.M., Song, Y Wu, B.B., Li, X.F., An, K. and Chu, J.H. Aerosol Air Qual. Res. 13, 574–583. (2013).
  34. Kjallstrand H., Olsson M. Biomass Bioenerg. 27, 557-561, (2004).
  35. Mitchell E., A. Lea-Langton, J. Jones, A. Williams, P. Layden, R. Johnson. Fuel Process Technol. 42, 113-123, (2016).
  36. Neuman J., D. Parrish, M. Trainer, T. Ryerson, D. Holloway, J. Nowak, A. Swanson, F. Flocke, J. Roberts, S. Brown, H. Stark, R. Sommariva, A. Stohl, R. Peltier, R. Weber, Wollny A, Sueper G, Fehsenfeld F. J. Geophys.Res-Atmos. 111, D23, (2006).
  37. Yuan B., Liggio J., Wentzell J., Li S-M., Stark H., Roberts J., Gilmann J., Lerner B., Warneke C., Li R., Leithead A., Osthoff H D., Wild R., Brown S. S., de Gouw J. A. Atmos.Chem. Phys. 16, 2139-2153, (2016).
  38. Belloni R., Barletta B., Bolzacchini E., Meinardi S., Orland M., Rindone B. J. Chromatogr. A. 846, 277-281, (1999).
  39. Gramsch E, Papapostolou V, Reyes F, Vásquez Y, Castillo M, Oyola P, López G, Cádiz A, Ferguson, Wolfson M, Lawrence J, Koutrakis P. J. Air Waste Manage. Assoc. 68(4):329-346, (2018) doi:10.1080/10962247.2017.1386600
  40. Simoneit B. Appl. Geochem., 17. 129-162, (2002).
  41. Taiz L., Zeiger E., Plant physiology 4th ed. Sunderland, M A Sinaur Associates Inc. (2006).
  42. Sheesley R.J., Schauer J., Chowdhury Z., Cass G., Simoneit B.R.T. J. Geosphys. Res. 108, 9, 4285-4299, (2003).
  43. Hedberg, E., Kristensson, A., Ohlsson, M., Johansson, P., Swietlicki, E., & Vesely, V. W. Atmos Environ, 36, 4823–4837, (2002).
  44. Hennigan, C. J., Miracolo, M. A., Engelhart, G., May, A. A., Presto, A. A., Lee, T. Robinson, A. L. Atmos. Chem. Phys. 11, 7669-7686, (2011).
  45. Schmidl, C., Markus, L., & Padouvas, E. Atmos Environ, 45, 7443-7454, (2011).
  46. Mendenhall, W.; Beaver, R.J.; Beaver, B.M. (2009). Non parametric statistics. In W. Mendenhall, R. Beaver, & B. Beaver, Introduction to probability and statistics. (13 ed.), Vol. 15, 630-637. Belmont, CA.
  47. González, R. B. Área de Estadística, Facultad de Ciencias Económicas y Empresariales. (2006). http://byrong.50g.com/estadistica/estadap/shapiro_wilks_byrong.pdf. May, 2011.
  48. Gramsh E. (2014) www. inventario-de-emisiones-RM_usach_2014.
  49. Vásquez Y., Doctoral Tesis. Conicyt 2016. Systematic study of the emissions associated with biomass burning. N° 21120705.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP