JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 61 No 4 (2016): Journal of the Chilean Chemical Society
Original Research Papers

ZrO2-SUPPORTED ALKALI METAL (Li, Na, K) CATALYSTS FOR BIODIESEL PRODUCTION

Gonzalo Aguila
Departamento de Ciencias de la Ingeniería, Facultad de Ingeniería, Universidad Andrés Bello
Daniela Salinas
Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad de Concepción
Romel Jiménez
Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción
Sichem Guerrero
Facultad de Ingeniería and Ciencias Aplicadas, Universidad de los Andes
Paulo Araya
Departamento de Ingeniería Química and Biotecnología, Facultad de Ciencias Físicas and Matemáticas, Universidad de Chile
Published December 10, 2016
Keywords
  • Alkali Meta,
  • Zirconia,
  • Heterogeneous Catalysts,
  • Transesterification,
  • Biodiesel
How to Cite
Aguila, G., Salinas, D., Jiménez, R., Guerrero, S., & Araya, P. (2016). ZrO2-SUPPORTED ALKALI METAL (Li, Na, K) CATALYSTS FOR BIODIESEL PRODUCTION. Journal of the Chilean Chemical Society, 61(4). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/118

Abstract

We studied the effect of the alkali metal type (Li, Na, and K) and the calcination temperature (500, 600 and 700 °C) in the activity for biodiesel production of catalysts prepared by impregnation method, with constant metal content of 10%w/w using ZrO2 as support. The results of the catalytic activity allowed to find an activity sequence regarding the alkali tested metals: Na > Li > K, with this sequence remaining constant independent of the calcination temperature. The high activity of the Na/ZrO2 system, and slightly lower activity of Li/ZrO2, can be explained by the fact that higher calcination temperatures promote the formation of alkali-based zirconate species, M2ZrO3 (M = Na or Li). The presence of these species is correlated with the higher activity of these catalysts, specifically with the Na and Li-based catalyst calcined at high temperatures (600-700 °C). These M2ZrO3 species show higher basicity respect to other alkali metal oxide species, as was demonstrated with CO2-TPD results. The higher activity corresponded to 10% Na supported on ZrO2 and calcined at 700 °C, which reached full conversion within just 30 minutes of reaction, which makes this system a promising heterogeneous replacement for the regular homogeneous systems.

References

  1. D.Y. Leung, X. Wu, M. Leung. A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4): 1083-1095, 2010.
  2. M. Borges, L. Díaz. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renewable and Sustainable Energy Reviews, 16(5): 2839-2849, 2012.
  3. S. Benjapornkulaphong, C. Ngamcharussrivichai, K. Bunyakiat. Al2O3- supported alkali and alkali earth metal oxides for transesterification of palm kernel oil and coconut oil. Chemical Engineering Journal, 145: 468- 74, 2009.
  4. H.J. Kim, B.S. Kang, M.J. Kim, Y.M. Park, D.K. Kim, J.S. Lee, K.Y. Lee. Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catalysis Today, 93-95: 315-320, 2004.
  5. D. Salinas, S. Guerrero, P. Araya. Transesterification of canola oil on potassium-supported TiO2 catalysts. Catalysis Communications, 11: 773- 777, 2010.
  6. D. Salinas, P. Araya, S. Guerrero. Study of potassium-supported TiO2 catalysts for the production of biodiesel. Applied Catalysis B: Environmental, 117-118: 260-267, 2012.
  7. H. Hattori. Heterogeneous Basic Catalysis. Chemical Reviews, 95(3): 537-558, 1995.
  8. K. Nakagawa, T. Ohashi. A novel method of CO2 capture from high temperature gases. Journal of the Electrochemical Society, 145: 1344- 1346, 1998.
  9. K.B. Yi, D.O. Eriksen. Low temperature liquid state synthesis of lithium zirconate and its characteristics as a CO2 sorbent. Separation and Purification Technology, 41: 283-296, 2006.
  10. N. Kaur, A. Ali. Lithium zirconate as solid catalyst for simultaneous esterification and transesterification of low quality triglycerides. Applied Catalysis A: General, 489: 193-202, 2015.
  11. N. Santiago-Torres, I. C. Romero-Ibarra, H. Pfeiffer. Sodium zirconate (Na2ZrO3) as a catalyst in a soybean oil transesterification reaction for biodiesel production. Fuel Processing Technology, 120: 34-39, 2014.
  12. D. A. Torres-Rodríguez, I. C. Romero-Ibarra, I. A. Ibarra, H. Pfeiffer. Biodiesel production from soybean and Jatropha oils using cesium impregnated sodium zirconate as a heterogeneous base catalyst. Renewable Energy, 93: 323-331, 2016.
  13. S. Rossignol, F. Gerard, D. Duprez. Effect of the preparation method on the properties of zirconia-ceria materials, Journal of Materials Chemistry 9: 1615-1620, 1999.
  14. G. Aguila, S. Guerrero, F. Gracia, P. Araya. Improvement of the thermal stability of hydrous zirconia by post-synthesis treatment with NaOH and NH4OH solutions. Applied Catalysis A: General, 305(2): 219-232, 2006.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP