JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 64 No 4 (2019): Journal of the Chilean Chemical Society
Original Research Papers

FOOT-OF-THE-WAVE ANALYSIS OF THE ELECTROCATALYTIC DECHLORINATION OF HEXACHLOROETHANE USING COBALOXIMES

Sebastián Pizarro
Instituto de Investigación Multidisciplinario en Ciencias y Tecnologías, Universidad de La Serena, Casilla 599, Benavente 980; La Serena, Chile
Michael Araya
Centro de Investigación y desarrollo tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
Francisco Gajardo
Departamento de Química, Facultad de Ciencias, Universidad de La Serena, Casilla 599, Benavente 980; La Serena, Chile.
Darly Concha
Departamento de Química, Facultad de Ciencias, Universidad de La Serena, Casilla 599, Benavente 980; La Serena, Chile.
Alvaro Delgadillo
Departamento de Química, Facultad de Ciencias, Universidad de La Serena, Casilla 599, Benavente 980; La Serena, Chile.
Published December 16, 2019
Keywords
  • cobaloxime,
  • cyclic voltammetry,
  • organochlorines,
  • catalysis
How to Cite
Pizarro, S., Araya, M., Gajardo, F., Concha, D., & Delgadillo, A. (2019). FOOT-OF-THE-WAVE ANALYSIS OF THE ELECTROCATALYTIC DECHLORINATION OF HEXACHLOROETHANE USING COBALOXIMES. Journal of the Chilean Chemical Society, 64(4), 4586-4589. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/1143

Abstract

In this work the electrochemical degradation of polychlorinated compounds using Co(dmgH)2Cl(py), Co(dpgH)2Cl(py), Co(chgH)2Cl(py) and Co(dbegH)2Cl(py) (where dmgH is dimethylglyoximato, dpgH is diphenylglyoximato, chgH is 1,2-cyclohexanedionedioximato and dbegH is di(4-methylbenzoate)glyoximato) is described. The degradation was studied using cyclic voltammetry by monitoring current changes in the zone near to the Co(II/I) half wave potential as the concentration of the organochloride in the electrochemical cell is increased. Hexachloroethane (HCA) was used as organohalide substrate, while gamma-hexachlorocyclohexane (lindane), 1,2-dichloroethane, and 1,1,1-trichloroethane were used for comparative studies.  The major dechlorination product of HCA, detected through head space GC-MS experiments after bulk electrolysis, was tetrachlorethylene. The rate constants of the dechlorination processes were estimated using the foot-of-the-wave analysis (FOWA), the values obtained were 1.10×105, 2.59×104, 4.91×10 and 1.83×104 for Co(dmgH)2Cl(py), Co(dpgH)2Cl(py), Co(chgH)2Cl(py)  and Co(dpegH)2Cl(py) respectively.

 

Graph_01.jpg

References

  1. Pleština, R. PESTICIDES AND HERBICIDES | Types of Pesticide. in Encyclopedia of Food Sciences and Nutrition 90, 4473–4483 (Elsevier, 2003).
  2. Sparling, D. W. Organochlorine Pesticides. in Ecotoxicology Essentials 69–107 (Elsevier, 2016). doi:10.1016/B978-0-12-801947-4.00004-4
  3. Coakley, J., Bridgen, P., Bates, M. N., Douwes, J. & t Mannetje, A. Chlorinated persistent organic pollutants in serum of New Zealand adults, 2011–2013. Sci. Total Environ. 615, 624–631 (2018).
  4. Kim, S. A., Kim, K. S., Lee, Y. M., Jacobs, D. R. & Lee, D. H. Associations of organochlorine pesticides and polychlorinated biphenyls with total, cardiovascular, and cancer mortality in elders with differing fat mass. Environ. Res. 138, 1–7 (2015).
  5. Crinnion, W. J. Chlorinated pesticides: Threats to health and importance of detection. Altern. Med. Rev. 14, 347–359 (2009).
  6. Corsini, E., Liesivuori, J., Vergieva, T., Van Loveren, H. & Colosio, C. Effects of pesticide exposure on the human immune system. Hum. Exp. Toxicol. 27, 671–80 (2008).
  7. Dich, J., Zahm, S. H., Hanberg, A. & Adami, H. O. Pesticides and cancer. Cancer Causes Control 8, 420–443 (1997).
  8. Taiwo, A. M. A review of environmental and health effects of organochlorine pesticide residues in Africa. Chemosphere 220, 1126–1140 (2019).
  9. Zhu, W. et al. A New Strategy towards Efficient and Recyclable Carbon-Chloride Bond Cleavage of Environmentally Harmful Organochlorides through Electrochemical Catalysis in Non–aqueous Media. ChemistrySelect 2, 645–649 (2017).
  10. Fritsch, J. M. & McNeill, K. Aqueous reductive dechlorination of chlorinated ethylenes with tetrakis(4-carboxyphenyl)porphyrin cobalt. Inorg. Chem. 44, 4852–4861 (2005).
  11. WHO. IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS. IARC, International Agency for Research on Cancer 79, (2001).
  12. Aulenta, F., Majone, M., Verbo, P. & Tandoi, V. Complete dechlorination of tetrachloroethene to ethene in presence of methanogenesis and acetogenesis by an anaerobic sediment microcosm. Biodegradation 13, 411–424 (2002).
  13. Ma, C. & Wu, Y. Dechlorination of perchloroethylene using zero-valent metal and microbial community. Environ. Geol. 55, 47–54 (2008).
  14. Kliegman, S. & McNeill, K. Dechlorination of chloroethylenes by cob(I)alamin and cobalamin model complexes. Dalt. Trans. 9226, 4191–4201 (2008).
  15. Costentin, C., Robert, M. & Savéant, J. M. Successive removal of chloride ions from organic polychloride pollutants. Mechanisms of reductive electrochemical elimination in aliphatic gem-polychlorides, α,β-polychloroalkenes, and α,β -polychloroalkanes in mildly protic medium. J. Am. Chem. Soc. 125, 10729–10739 (2003).
  16. Assaf-Anid, N., Hayes, K. F. & Vogel, T. M. Reduction dechlorination of carbon tetrachloride by cobalamin(II) in the presence of dithiothreitol: mechanistic study, effect of redox potential and pH. Environ. Sci. Technol. 28, 246–252 (1994).
  17. Rich, A. E., DeGreeff, A. D. & McNeill, K. Synthesis of (chlorovinyl)cobaloxime complexes, model complexes of proposed intermediates in the B12-catalyzed dehalogenation of chlorinated ethylenes. Chem. Commun. 2, 234–235 (2002).
  18. Bhattacharjee, A. et al. Combined Experimental–Theoretical Characterization of the Hydrido-Cobaloxime [HCo(dmgH) 2 (P n Bu 3 )]. Inorg. Chem. 51, 7087–7093 (2012).
  19. Kaeffer, N., Chavarot-Kerlidou, M. & Artero, V. Hydrogen evolution catalyzed by cobalt diimine-dioxime complexes. Acc. Chem. Res. 48, 1286–1295 (2015).
  20. Valdez, C. N., Dempsey, J. L., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Catalytic hydrogen evolution from a covalently linked dicobaloxime. Proc. Natl. Acad. Sci. 109, 15589–15593 (2012).
  21. Lawrence, M. A. W. et al. Computational, electrochemical, and spectroscopic studies of two mononuclear cobaloximes: the influence of an axial pyridine and solvent on the redox behaviour and evidence for pyridine coordination to cobalt( i ) and cobalt( ii ) me. Dalt. Trans. 45, 10326–10342 (2016).
  22. Losse, S., Vos, J. G. & Rau, S. Catalytic hydrogen production at cobalt centres. Coord. Chem. Rev. 254, 2492–2504 (2010).
  23. Pizarro, S., Araya, M. & Delgadillo, A. Hexachloroethane reduction catalyzed by cobaloximes. Effect of the substituents on the equatorial ligands. Polyhedron 141, 94–99 (2018).
  24. Fan, W. Y., Tan, Z. Bin & Koh, J. I. Proton reduction using cobalt glyoximes with isothiocyanate and aniline axial ligands. Polyhedron 96, 38–43 (2015).
  25. Concepción, S., Aguiló, M., Solans, X. & Font-Altaba, M. Synthesis and Structure of Chloro ( ligand ) bis ( diphenylglyoximato ) cobalt ( Complexes. Inorganica Chim. Acta 127, 153–159 (1987).
  26. Xin, Z., Deyan, H., Yizhi, L. & Huilan, C. Structure and thermal decomposition studies on alkylcobaloxime B 12 model compounds with 1,2-cyclohexanedione dioxime as equatorial ligand. Inorganica Chim. Acta 359, 1121–1128 (2006).
  27. Pizarro, S., Gallardo, M., Gajardo, F. & Delgadillo, A. Electrochemical reduction of lindane using a cobaloxime containing electron-withdrawing groups. Inorg. Chem. Commun. 99, 164–166 (2019).
  28. Panagiotopoulos, A., Ladomenou, K., Sun, D., Artero, V. & Coutsolelos, A. G. Photochemical hydrogen production and cobaloximes: the influence of the cobalt axial N-ligand on the system stability. Dalt. Trans. 45, 6732–6738 (2016).
  29. Lee, K. J., Elgrishi, N., Kandemir, B. & Dempsey, J. L. Electrochemical and spectroscopic methods for evaluating molecular electrocatalysts. Nat. Rev. Chem. 1, 0039 (2017).
  30. Costentin, C., Drouet, S., Robert, M. & Savéant, J. M. Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. Cyclic voltammetry and preparative-scale electrolysis. J. Am. Chem. Soc. 134, 11235–11242 (2012).
  31. Costentin, C. & Savéant, J.-M. Multielectron, Multistep Molecular Catalysis of Electrochemical Reactions: Benchmarking of Homogeneous Catalysts. ChemElectroChem 1, 1226–1236 (2014).
  32. Costentin, C. & Savéant, J.-M. Multielectron, Multistep Molecular Catalysis of Electrochemical Reactions: Benchmarking of Homogeneous Catalysts. ChemElectroChem 1, 1226–1236 (2014).
  33. Elgrishi, N., Chambers, M. B. & Fontecave, M. Turning it off! Disfavouring hydrogen evolution to enhance selectivity for CO production during homogeneous CO 2 reduction by cobalt–terpyridine complexes. Chem. Sci. 6, 2522–2531 (2015).
  34. Costentin, C. & Savéant, J. M. Homogeneous Molecular Catalysis of Electrochemical Reactions: Catalyst Benchmarking and Optimization Strategies. J. Am. Chem. Soc. 139, 8245–8250 (2017).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP