JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 61 No 4 (2016): Journal of the Chilean Chemical Society
Original Research Papers

ELECTROCHEMICAL METHOD FOR SULFITE DETERMINATION IN WINES BY ELECTROCHEMICAL RESPONSE USING A MEMBRANE ABSORBER SYSTEM

Roxana Arce
Universidad de Santiago de Chile, Department of Chemical Engineering, Faculty of Engineering
Carla Báez
Universidad de Santiago de Chile, Department of Materials, Faculty of Chemistry and Biology
J. P. Muena
Pontificia Universidad Católica de Chile, Department of Inorganic Chemistry, Faculty of Chemistry
María J. Aguirre
Universidad de Santiago de Chile, Department of Materials, Faculty of Chemistry and Biology
Julio Romero
Universidad de Santiago de Chile, Department of Chemical Engineering, Faculty of Engineering
Published December 10, 2016
Keywords
  • Wines,
  • Sulfite,
  • Membrane contactor,
  • Aspiration method,
  • Ripper method,
  • Electrooxidation
  • ...More
    Less
How to Cite
Arce, R., Báez, C., Muena, J. P., Aguirre, M. J., & Romero, J. (2016). ELECTROCHEMICAL METHOD FOR SULFITE DETERMINATION IN WINES BY ELECTROCHEMICAL RESPONSE USING A MEMBRANE ABSORBER SYSTEM. Journal of the Chilean Chemical Society, 61(4). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/112

Abstract

This research demonstrates how the sulfite content can be measured by cyclic voltammetry using a previously reported membrane absorber system, which separates efficiently sulfite present in wine. Results obtained show notably similar values to those obtained for the same wine samples using modified Monier- Williams method (aspiration method) and Ripper method. The membrane absorber system allows the release of the free SO2, and can be used to determine the sulfur dioxide present in juices and other foods that contain high concentrations of phenols, polyphenols and other structurally related compounds that act as interferers in the electrochemical oxidation of sulfite. The absorber solution allows a direct measurement without change in pH or added electrolyte, facilitating the determination of great amounts of samples from diverse wines using only one calibration curve. In this way, a system that allows the detection of sulfite and that can be used in vineyards is obtained.

Finally, the method was assessed on linearity, sensitivity, accuracy, reproducibility and repeatability, obtaining values that account for the applicability of the method.

 

References

  1. I. Hornsey The Chemistry and Biology of Wine Making. The Royal Society of Chemistry. Thomas Graham House, Cambridge, 2007.
  2. H. J. Schwartz J. Allergy Clin. Immunol. 71, 487, (1983).
  3. I. Streeter, J. Wain, A. J. Davis, R. Compton J. Phys. Chem. B 109, 18500- 18506, (2005).
  4. Food Safety and Inspection Service Office of Public Health Science CLG-SFT1.00, Determination of Sulfites, Department of Agriculture, USA, 2006.
  5. B. Zoecklein, K. Fugelsang, B. Gump, F. Nury Análisis y Producción de Vino, Dióxido de azufre y ácido ascórbico, Ed. Acribia, S.A, Zaragoza, 2001.
  6. A. Hasanoğlu, J. Romero, A. Plaza, W. Silva Desalination and Water Treatment 51, 5649-5663, (2013).
  7. A. Plaza, J. Romero, W. Silva, E. Morales, A. Torres, M. J. Aguirre, Food Science and Technology International. DOI: 10.1177/1082013213494900, (2013).
  8. A. J. Bard & L. R. Faulkner, Electrochemical methods, Electroactive layers and modified electrodes, Wiley, New Jersey, 2001.
  9. L. Zhu, L. Xu, B. Huang, N. Jia, L. Tan, S. Yao Electrochim. Acta 15, 471- 477, (2014).
  10. G. Bia, L. Borgnino, P. I. Ortiz, V. Pfaffen Sensors and Actuators B: Chem. 203, 396-405, (2014).
  11. D. Skoog, J. Holler, T. Nieman, Principios de Análisis Instrumental, Mc Graw Hill, Columbus, 2001.
  12. M. Lucero, G. Ramírez, A. Riquelme, I. Azócar, M. Isaacs, F. Armijo, J. E. Förster, E. Trollund, M. J. Aguirre, D. Lexa J. Mol. Catalysis A: Chem. 221, 71-76, (2004).
  13. B. Molinero-Abad, M. A. Alonso-Lomillo, O. Domínguez-Renedo, M. J. Arcos-Martínez Analytica Chim. Acta 812, 41-44, (2014).
  14. A. Hasanoğlu, J. Romero, B. Pérez, A. Plaza, Chem. Engineering J. 160, 530-537, (2010).
  15. R. Arce, P. Márquez, F. Herrera, M. J. Aguirre, J. Romero J. Chilean Chem. Soc. 58, 1982-1985, (2013).
  16. G. Monier-Williams Rep. Publ. Health Med. Subj. 43, 1, (1927).
  17. Appendix A. Official Methods of Analysis of AOAC, Section 20.123–125, 1984.
  18. B. C. Rankine, K. F. Pocock Brewing Spirit Review. Australian Wine 40, (1970).
  19. P. Iland, A. Ewart, J. Sitters, Techniques for Chemical Analysis of Grape Juice and Wine, Patrick Iland Wine Promotions, Adelaide, 1993.
  20. E. Bordeu, J. Scarpa Análisis Químico del Vino. Antisépticos, Pontificia Universidad Católica de Chile, Chile, 1998.
  21. J. M. Vahl, J. E. Converse J. Assoc. Off., Anal. Chem. 63, 194, (1980).
  22. G. E. P. Box, W. G. Hunter, J. S. Hunter, Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building, John Wiley & Sons, Hoboken, 1978.
  23. J. Henríquez, G. Ramírez, B. Matsuhiro, L. Mendoza, M. Isaacs, C. Arévalo, M. J. Aguirre J. Quantum Chemistry, Sent.
  24. C. Montes, J. H. Vélez, G. Ramírez, M. Isaacs, R. Arce, M. J. Aguirre The Sci. World J. doi: 10.1100/2012/168148, (2012).
  25. S. McLeod, D. E. Davey Analytica Chim. Acta 600, 75, (2007).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP