JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 64 No 1 (2019): Journal of the Chilean Chemical Society
Original Research Papers

EXPERIMENTAL AND THEORETICAL ANALYSIS OF N,N’-(ETHANE-1,2-DIYLBIS(4,1-PHENYLENE)) BIS(1-(THIOPHEN-2-YL)METHANIMINE) AND N,N’-(ETHANE-1,2-DIYLBIS(4,1-PHENYLENE))BIS(1-(4- METHYLTHIOPHEN-2-YL)METHANIMINE) SCHIFF BASE LIGANDS

Guhergul Ulucam
Department of Chemistry, Faculty of Sciences, Trakya University
Busra Yenturk
Department of Chemistry, Faculty of Sciences, Trakya University
Published March 27, 2019
Keywords
  • thiophene,
  • schiff base,
  • Gaussian 09w,
  • DFT/B3LYP
How to Cite
Ulucam, G., & Yenturk, B. (2019). EXPERIMENTAL AND THEORETICAL ANALYSIS OF N,N’-(ETHANE-1,2-DIYLBIS(4,1-PHENYLENE)) BIS(1-(THIOPHEN-2-YL)METHANIMINE) AND N,N’-(ETHANE-1,2-DIYLBIS(4,1-PHENYLENE))BIS(1-(4- METHYLTHIOPHEN-2-YL)METHANIMINE) SCHIFF BASE LIGANDS. Journal of the Chilean Chemical Society, 64(1). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/1044

Abstract

N,N’-(ethane-1,2-diylbis(4,1-phenylene))bis(1-(thiophen-2-yl)methanimine) and N,N’-(ethane-1,2-diylbis(4,1-phenylene))bis(1-(4-methylthiophen-2-yl) methanimine) ligands are formed by diamine and two aromatic aldehyde using Schiff base condensation method. Ligands are characterised by fourier transform infrared spectroscopy (FT-IR), 1H- and 13C- nuclear magnetic resonance spectroscopy (1H- and 13C- NMR) and mass spectroscopy (LC ESI/MS) methods. Furthermore, geometric properties such as bond lenghts, bond angles, dihedral angles, electronic properties, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies are calculated by using Gaussian 09w program. Experimental and theoretical spectrum datas are compared.

References

  1. C. Chandramouli, M. R. Shivanand, T. B. Nayanbhai, B. Bheemachari, R.H. Udupi, J Chem Pharm Res, 4, 1151, (2012).
  2. R.P. Chinnasamy, R. Sundararajan, S. Govindaraj, J Adv Pharm Technol Res, 1, 342, (2010).
  3. R. Miri, N. Razzaghi-asl, M.K. Mohammadi, Journal of molecular modeling, 19, 727, (2013).
  4. P. Venkatesh, Asian J Pharm Health Sci, 1, 8, (2011).
  5. D. Wei, N. Li, G. Lu, K. Yao, 49, 225, (2006).
  6. A. Pui, T. Malutan, L. Tataru, C. Malutan, D. Humelnicu, G. Carja, Polyhedron, 30, 2127, (2011).
  7. D.M. Boghaei, S. Mohebi, Tetrahedron, 58, 5357, (2002).
  8. S. Mihai, M. Negoiu, A. Bondarev, Rev. Chım. (Bucuresti), 60, 778, (2009).
  9. A. Yaul, G. Pethe, R. Deshmukh, A. Aswar, J. Therm. Anal. Calorim., 113, 745, (2013).
  10. J.R. Zamian, E.R. Dockal, Tran. MetalChem., 21, 370, (1996).
  11. R.A. Smith, S. Natelson, 53, 3476, (1931).
  12. R.G. Ramsinghani, Z.A. Filmwala, WJPPS, 6, 1255, (2017).
  13. I. Alkorta, J.J. Perez, Int. J. Quantum Chem., 57, 123, (1996).
  14. C. James, C. Ravikumar, T. Sundius, V. Krishnakumar, R. Kesavamoorthy, V.S. Jayakumar, I. Hubert Joe, Vib. Spectrosc. , 47, 10, (2008).
  15. D.F.V. Lewis, H.B. Broughton, ScientificWorldJournal., 27, 1776, (2002).
  16. J.S. Murray, K. Sen (1996) Molecular Electrostatic Potentials, Concepts and Applications. 1 edn. Elsevier Science, Amsterdam-Netherlands.
  17. R.G. Pearson, Proc. Natl. Acad. Sci. U. S. A., 83, 8440, (1986).
  18. J. Šponer, P. Hobza, Int. J. Quantum. Chem., 57, 959, (1996).
  19. A. Vela, J.L. Gazquez, Am. Chem. Soc., 112, 1490, (1990).
  20. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox (2009) Gaussian 09, Revision B.01. Wallingford CT.
  21. L. Casella, J.A. Ibers, Inorg. Chem., 20, 2438, (1981).
  22. J.B. Foresman, A.E. Frisch (1996) Exploring chemistry with electronic structure methods. 2 edn. Gaussian, Inc, Wallingford, CT.
  23. J.S. Sreedasyam, J. Sunkari, S. Kundha, R.R. Gundapaneni, Acta Crystallogr. E. , 69, o673, (2013).
  24. M. Turkyilmaz, G. Uluçam, Ş. Aktaş, S.E. Okan, J. Mol. Struct., 1136, 263, (2017).
  25. G. Uluçam, S.E. Okan, Ş. Aktaş, G.P. Öğretmen, J. Mol. Struct., 1102, 146, (2015).
  26. G. Ulucam, M. Turkyilmaz, Bioinorg. Chem. Appl. , 2018, 12, (2018).
  27. J.S. Al-Otaibi, R.I. Al-Wabli, Spectrochim. Acta. A Mol. Biomol. Spectrosc. , 137, 7, (2015).
  28. Ö. Tamer, D. Avcı, Y. Atalay, J. Phys. Chem. Solids, 99, 124, (2016).
  29. S. Altürk, D. Avcı, Ö. Tamer, Y. Atalay, J. Mol. Struct., 1164, 28, (2018).
  30. S. Altürk, Ö. Tamer, D. Avcı, Y. Atalay, J. Organomet. Chem., 797, 110, (2015).
  31. M.T. Gabr, N.S. El-Gohary, E.R. El-Bendary, M.M. El-Kerdawy, N. Ni, M.I. Shaaban, Chin. Chem. Lett., 26, 1522, (2015).
  32. K.B. Gudasi, R.S. Vadavi, R.V. Shenoy, S.A. Patil, M. Nethaji, Trans. Metal. Chem., 31, 374, (2006).
  33. M.N. Hriday, R.K. Srivastava, V. Narayan, S. Chand, A.K. Sachan, V.K. Shukla, O. Prasad, L. Sinha, Res. J. Recent Sci. , 2, 150, (2013).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP