JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 64 No 1 (2019): Journal of the Chilean Chemical Society
Original Research Papers

ENHANCEMENT SPECTRAL RESOLUTION FOR THE PREDICTION AMOUNT OF SOFOSBUVIR AND LEDIPASVIR USING LEAST SQUARES SUPPORT VECTOR MACHINE AND ARTIFICIAL NEURAL NETWORKS IN PHARMACEUTICAL FORMULATION

Negin Safakhoo
Department of Chemistry, North Tehran Branch, Islamic Azad University
Mahmoud Reza Sohrabi
Department of Chemistry, North Tehran Branch, Islamic Azad University
Mahsa Khalili
Department of Chemistry, North Tehran Branch, Islamic Azad University
Shirin Mofavvaz
Department of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza
Published March 27, 2019
Keywords
  • least square support vector machine,
  • Artificial neural networks,
  • Sofosbuvir,
  • Ledipasvir,
  • Harvoni
How to Cite
Safakhoo, N., Reza Sohrabi, M., Khalili, M., & Mofavvaz, S. (2019). ENHANCEMENT SPECTRAL RESOLUTION FOR THE PREDICTION AMOUNT OF SOFOSBUVIR AND LEDIPASVIR USING LEAST SQUARES SUPPORT VECTOR MACHINE AND ARTIFICIAL NEURAL NETWORKS IN PHARMACEUTICAL FORMULATION. Journal of the Chilean Chemical Society, 64(1). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/1040

Abstract

In this study, least squares support vector machine (LS-SVM) and artificial neural networks (ANNs) as intelligent methods combined with spectrophotometry method, were used for determination of Sofosbuvir (SOF) and Ledipasvir (LED) in synthetic mixtures and Harvoni tablet simultaneously. In the LS-SVM method, Radial Basis Function (RBF) was used as kernel function. Then, the regularization parameter (γ) and Bandwidth (2) were optimized and root mean square error prediction (RMSE) was 0.4164, 0.6033 for SOF and LED respectively. Afterwards, Feed-forward back-propagation network with different training algorithms was used in artificial neural network method. These training algorithms compared with each other for selecting the best model. On the other hand, radial basis function neural network (RBFNN) was applied as an efficient network. Finally, these methods were compared to the high- performance liquid chromatography (HPLC) as a reference method. According to one way analysis of variance (ANOVA) test at the 95 % confidence level, there were no significant differences between LS-SVM, ANN and reference methods.

References

  1. E. I. Ismail, A. E. Morgan, R. E. Farag, Journal of Otology, 13, 10–15, (2018).
  2. A. Parfieniuk, J. Jaroszewicz, R. Flisiak, World J Gastroenterol, 13,5673– 5681, (2007).
  3. M. Khalili, M. R. Sohrabi, V. Mirzabeygi, N. Torabi Ziaratgahi, Spectrochim. Acta A, 194, 141–151, (2018).
  4. F. M. Salama, Kh. A. Attia, A. A. Abouserie, A. El-Olemy, E. Abolmagd, Spectrochim. Acta A, 190, 513-517, (2018).
  5. S. Saab, S. H. Park, M. Mizokami, M. Omata and et al, Hepatology, 63,1112-1119, (2016).
  6. B. Dudekula, C. Ramachandraiah, N. Devanna, Indo Am. j. Pharm, 7, 480- 487, (2017).
  7. G. Kumaraswamy, K.Pranay, M.Rajkumar, R.Lalitha, Innovat Int J Medical & Pharm Sci, 2, 81-85, (2017).
  8. B. Sreenivasa Rao, M. Varaprasad Reddy, B. Sreenivasa Rao, chemistry, 6, 505-509, (2017).
  9. M.M. Baker, D.S. El-Kafrawy, M.S. Mahrous,T.S. Belal, Ann Pharm Fr, 76, 16-31, (2018).
  10. O. M. Abdallaha, A. M. Abdel-Megied, A. S. Gouda, J. Pharm. Biomed. Anal, 143, 305–310, (2017).
  11. T. Nagaraju, S.V.M.Vardhan, D.Ravi Kumar, D.Ramachandran, Int J Chemtech Res, 10, 761-768, (2017).
  12. M. El-Kassem M Hassouna, M. M. Abdelrahman, M. A. Mohamed, J Forensic Sci & Criminal Inves, 1, 1-11, (2017).
  13. F. M. Salama, Kh. A. Attia, A. A. Abouserie, A. El-Olemy, E. Abolmagd, Anal. Chem Letters, 7, 241 – 247, (2017).
  14. M. A. Wadie, S. M. Mostafa, S. Mohamed El. Adl, M. S. Elgawish, IOSR J Pharm Biol Sci, 12, 60-68, (2017).
  15. M. Mesbah, E. Soroush, Chin. J. Chem. Eng, 25, 1238-1248, (2017).
  16. L. Kumar, S. Krishna Sripada, A. Sureka , S. Ku. Rath, The Journal of Systems and Software, 137, 686-712, (2018).
  17. Y. Tian, X. Ju, Zh. Qi, Y. Shi, Comput Math Appl, 66, 1935–1947, (2013).
  18. S. Heddam, O. Kisi, Journal of Hydrology, 559, 499-509, (2018).
  19. M. R. Sohrabi, G. Darabi, Spectrochim. Acta A, 152, 443–452, (2016).
  20. G. Li, P. Niu, W. Zhang, Y. Liu, Chemom. Intell. Lab. Syst, 11-20, 126, (2013).
  21. J. Zhaoa, Q. Chena, X. Huanga, C.H. Fang, J. Pharm. Biomed. Anal, 41,1198–1204, (2006).
  22. P. Samui, Engineering, 3, 431-434, (2013).
  23. A. Niazi, S. Jameh-Bozorghi, D. Nori-Shargh, J Hazard Mater, 151, 603– 609, (2008).
  24. Z. Aram, S. Jafari, J. Ma, J. C. Sprott, S. Zendehrouh , V. Thanh Pham, Commun Nonlinear Sci Numer Simulat, 44, 449–459, (2017).
  25. M. Charles Arockiaraj, Research Inventy: Int J Eng Sci, 3, 8-11, (2013).
  26. T. Muhammad, Z. Halim, Appl. Soft Comput, 49, 365–384, (2016).
  27. M. Khaki, I. Yusoff, N. Islami, N. Hayati Hussin, Malaysia, Sains Malaysiana, 45,19-28, (2016).
  28. A. Najafi-Marghmaleki, M. R. Khosravi-Nikou b, A. Barati-Harooni, J Mol Liq. 220, 232–237, (2016).
  29. X. Yu, Ch. Ye, L. Xiang, Neurocomputing, 214, 376-381, (2016).
  30. Sh. Mohanty, M. K. Jha, A. Kumar, K. P. Sudheer, Water Resour Manage, 24, 1845–1865, (2010).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP