JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 64 No 1 (2019): Journal of the Chilean Chemical Society
Original Research Papers

RAMAN CHARACTERIZATION OF CuCr2-xSnxS4 SPINELS

P. Valencia-Gálvez
Facultad de Ciencias, Departamento de Química, Universidad de Chile
O. Peña
Institut des Sciences Chimiques de Rennes, Université de Rennes
S. Moris
Vicerrectoría de Investigación y postgrado, Universidad Católica del Maule
P. Barahona
Facultad de Ciencias Básicas, Universidad Católica del Maule
Published March 27, 2019
Keywords
  • thiospinels,
  • Raman spectroscopy,
  • magnetic measurements
How to Cite
Valencia-Gálvez, P., Peña, O., Moris, S., & Barahona, P. (2019). RAMAN CHARACTERIZATION OF CuCr2-xSnxS4 SPINELS. Journal of the Chilean Chemical Society, 64(1). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/1036

Abstract

Polycrystalline thiospinels CuCr2-xSnxS4 (x = 0.4, 0.8, 1.0 and 1.4) were synthesized via conventional solid-state reaction. The samples were characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray analysis (SEM-EDS) and Raman spectroscopy. All the samples were indexed in the space group . The Raman spectra confirmed the structure of normal spinel type with five characteristic signals for the active modes in Raman. Magnetic measurements, per­formed for the phases with x = 0.8 and 1.0, showed irreversible antiferromagnetism with dominant ferromagnetism and spin glass behavior.

References

  1. J. Ruiz-Fuertes, D. Errandonea, F.J. Manjón, D. Martínez-García, A. Segura, V. V. Ursaki, I.M. Tiginyanu, High-pressure effects on the optical-absorption edge of CdIn2S4, MgIn2S4, and MnIn2S4 thiospinels, J. Appl. Phys. 103 (2008) 1–5. doi:10.1063/1.2887992.
  2. F. Kariya, S. Ebisu, S. Nagata, Evolution from a ferromagnetic to a spin-glass regime in the spinel-type Cu(Cr1 -xTix)2S4, J. Solid State Chem. 182 (2009) 608–616. doi:10.1016/j.jssc.2008.12.008.
  3. T. Ishikawa, S. Ebisu, S. Nagata, Spin-glass and novel magnetic behavior in the spinel-type Cu1-xAgxCrSnS4, Phys. B Condens. Matter. 405 (2010) 1881–1889. doi:10.1016/j.physb.2010.01.067.
  4. R. Plumier, M. Sougi, Magnetic ordering in the normal spinel Cu0.5In0.5Cr2Se4, Solid State Comm. 69 (1989) 341–345.
  5. Y. Iijma, Y. Kamei, N. Kobayashi, J. Awaka, T. Iwasa, S. Ebisu, S. Chika¬zawa, S. Nagata, A new ferromagnetic thiospinel CuCrZrS4 with re-entrant spin-glass behaviour, Philos. Mag. 83 (2003) 2521–2530. doi:10.1080/014 1861031000109609
  6. V.A. Fedorov, Y.A. Kesler, E.G. Zhukov, Magnetic semiconducting chal¬cogenide spinels: Preparation and physical chemistry, Inorg. Mater. 39 (2003) S68–S88. doi:10.1023/B:INMA.0000008887.85985.6b
  7. F.K. Lotgering, Ferromagnetism in spinels: CuCr2S4 and CuCr2Se4, Solid State Commun. 2 (1964) 55–56. doi: 10.1016/0038-1098(64)90573-3
  8. C. Pang, L. Gao, A. Chaturvedi, N. Bao, K. Yanagisawa, L. Shen, A. Gup¬ta, High-temperature solvothermal synthesis and magnetic properties of nearly monodisperse CdCr2S4 nanocrystals, J. Mater. Chem. C. 3 (2015) 12077–12082. doi:10.1039/C5TC02727F
  9. P. Colombet, J. Soubeyroux, M. Danot, Spin correlations in the Cu2xCr2x¬Sn2-2xS4 Spinel spin glasses, J. Magn. Magn. Mater. 51 (1985) 257–264.
  10. C. Pinto, A. Galdámez, P. Barahona, S. Moris, O. Peña, Crystal struc¬ture, Raman scattering and magnetic properties of CuCr2−xZrxSe4 and CuCr2−xSnxSe4 selenospinels, J. Magn. Magn. Mater. 456 (2018) 160–166. doi:10.1016/j.jmmm.2018.02.023
  11. V. Gnezdilov, P. Lemmens, Y.G. Pashkevich, C. Payen, K.Y. Choi, J. Hem¬berger, A. Loidl, V. Tsurkan, Phonon anomalies and possible local lattice distortions in giant magnetocapacitive CdCr2S4, Phys. Rev. B 84 (2011) 1–6. doi:10.1103/PhysRevB.84.045106
  12. R.D. Shannon, Revised effective ionic radii and systematic studies of in¬teratomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A. 32 (1976) 751–767. doi:10.1107/S0567739476001551
  13. M. Tremblet, P. Colombet, J. Rouxel, M. Danot, Les system pseudobi¬naires CuCrS2-MeS2 (Me = Ti, Sn): CuyCryM2-yS4 (CuxCrxM1-xS2) Spinels. Rev. Chim. Min. 17 (1980) 183-191.
  14. F. Brüesch, P. D’Ambrogio, Lattice Dynamics and Magnetic Ordering in the chalcogenide spinels CdCr2S4 and CdCr2Se4, Phys. Stat. Sol. 50 (1972) 513–526.
  15. N. Koshizuka, S. Ushioda, T.Tsushima, Resonance Rarnan scattering in CdCr2S4. Magnetic-circular-polarization properties, Phys. Rev. B. 21 (1980) 1316–1322.
  16. C.J. Fennie, K.M. Rabe, Polar phonons and intrinsic dielectric response of the ferromagnetic insulating spinel CdCr2S4 from first principles, Phys. Rev. 72 (2005) 1–5. doi:10.1103/PhysRevB.72.214123
  17. I. Efthimiopoulos, A. Yaresko, V. Tsurkan, J. Deisenhofer, A. Loidl, C. Park, Y. Wang, Multiple pressure-induced transitions in HgCr2S4, Appl. Phys. Lett. 103 (2013) 1–6. doi:10.1063/1.4830225
  18. V.G. Ivanov, M.N. Iliev, Y.H.A. Wang, A. Gupta, Ferromagnetic spinel Cu¬Cr2Se4 studied by Raman spectroscopy and lattice dynamics calculations, Phys. Rev. 81 (2010) 1–5. doi:10.1103/PhysRevB.81.224302
  19. M.M. Ballal, C. Mande, X-ray spectroscopic study of the valency of cop¬per in the spinels CuCr2X4 (X = O, S, Se, Te), Solid State Commun. 19 (1976) 325–327. doi:10.1016/0038-1098(76)91343-0

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP