SYNTHESIS OF EOSIN Y-SENSITIZED Ag-TiO2 NANO-HYBRID FOR OPTIMIZED PHOTOCATALYTIC DEGRADATION OF AQUEOUS CAFFEINE
- TiO2,
- Photocatalysis,
- Caffeine,
- Taguchi,
- RSM
- Doping ...More
Copyright (c) 2019 Journal of the Chilean Chemical Society
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
The visible light spectral response of titania nanoparticles synthesized by hybrid treatment of TiO2 with silver dopant and Eosin Y-sensitizer was evaluated using caffeine, an emerging pollutant. The photocatalyst was characterized using scanning electron microscopy (SEM), x-ray diffraction (XRD), solid state UV/ Visible spectrometry and Fourier transform infrared spectrometry (FTIR). Upon sensitization and doping, downsizing, increase in surface area and redshift were observed without significant annihilation of the tetragonal anatase and rutile structures. Factors affecting the degradation of caffeine were studied using Taguchi orthogonal array model and optimized using a response surface methodology (RSM) based on faced-centered composite design (FCCD). Caffeine degradation under the conditions of the study was not affected significantly by temperature but pH, initial concentration and catalyst concentration. Evidence for electron injection and red shift with sensitization was corroborated using quantum calculations at DFT/B3LYP level of the theory.
References
- [C. Indermuhle, M.J. Martín de Vidales, C. Sáez, J. Robles, P. Cañizares, J.F. García-Reyes, A. Molina-Díaz, C. Comninellis, M.A. Rodrigo, Chemosphere. 93, 1720, (2013).
- H.J. Souza, C.B. Moyses, F.J. Pontes, R.N. Duarte, C.E. Sanches da Silva, F.L. Alberto, U.R. Ferreira, M.B. Silva, Mol. Cell. Probes. 25, 231, (2011).
- C. Xu, L. Chen, L. You, Z. Xu, L.F. Ren, K.Y.-H. Gin, Y. He, W. Kai, Environ. Sci.: Processes Impacts. 20, 1030, (2018).
- S. Weigel, J. Kuhlmann, H. Hühnerfuss, Sci. Total Environ. 295, 131, (2002).
- W.A. Cabrera-Lafaurie, F.R. Román, A.J. Hernández-Maldonado, J. Hazard. Mater. 282, 174, (2014).
- O.M. Couto Jr, I. Matos, I. Maria da Fonseca, P.A. Arroyo, E. Antônio da Silva, M.A.S. Dornellas de Barros, Can. J. Chem. Eng. 93, 68 (2015).
- L.P. Padhye, H. Yao, F.T. Kung’u, C.-H. Huang, Water Res. 51, 266, (2014).
- P. Wang, Z. Guan, Q. Li, J. Yang, J. Mater. Sci. 53, 774, (2017).
- R. Rosal, A. Rodríguez, J.A. Perdigón-Melón, A. Petre, E. García-Calvo, M.J. Gómez, A. Agüera, A.R. Fernández-Alba, Chemosphere 74, 825 (2009).
- O. Ganzenko, N. Oturan, D. Huguenot, E.D. van Hullebusch, G. Esposito, M.A. Oturan, 156, 987, (2015).
- A.O. Ibhadon, F.H. Paul, Catalysts 3, 234, (2013).
- N. Nakada, H. Shinohara, A. Murata, K. Kiri, S. Managaki, N. Sato, H. Takada, Water Res. 41, 4373, (2007).
- N. Vieno, T. Tuhkanen, L. Kronberg, Water Res. 41, 1001, (2007).
- M. Klavarioti, D. Mantzavinos, D. Kassinos, Environ. Int. 35, 402, (2009).
- R. Rosal, A. Rodríguez, J.A. Perdigón-Melón, A. Petre, E. García-Calvo, M.J. Gómez, A. Agüera, A.R. Fernández-Alba, Chemosphere 74 (2009) 825–831. https://doi.org/10.1016/j.chemosphere.2008.10.010.
- U.I. Gaya, Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids, Springer, Dordrecht, 2014.
- M.K. Arfanis, P. Adamou, N.G. Moustakas, T.M. Triantis, A.M. Kontos, P. Falaras, Chem. Eng. J. 310, 525, (2017).
- J. Matos, B. Llano, R. Montaña, P.S. Poon, M.C. Hidalgo, Environ. Sci. Pollut. Res. 25, 18894, (2018).
- P. Chowdhury, J. Moreira, H. Gomaa, A.K. Ray, Ind. Eng. Chem. Res. 51, 4523, (2012).
- X. Li, J.-L. Shi, H. Hao, X. Lang, Appl. Catal., B. 232, 260, (2018).
- D. Chatterjee, A. Mahata, J. Photochem. Photobiol. A. 165, 19, (2004).
- M. Grätzel, Inorg. Chem.44, 6841, (2005).
- S. Rengaraj, X.Z. Li, J. Mol. Catal. A: Chem. 243, 60, (2006).
- H. Ran, J. Fan, X. Zhang, J. Mao, G. Shao, Appl. Surf. Sci. 430, 515, (2017).
- P. Wang, L. Zong, Z. Guan, Q. Li, J.Yang, Nanoscale Res. Lett. 1, (2018).
- A. Yusuf, U. Gaya, Nanochem. Res. 3, 29, (2018).
- R.A. Spurr, H. Myers, Anal. Chem. 29, 760, (1957).
- K.P.D.A. Savio, D. Starikov, A. Bensaoula, R. Pillai, L.L. de La Torres Garcia, C.R. Hernández, Ceram. Int. 38, 3529 (2012).
- Y. Zhang, Q. Li, Solid State Sci. 16, 16, (2013).
- K. Lalitha, J.K. Reddy, M.V.P. Sharma, V.D. Kumari, M. Subrahmanyam, Int. J. Hydrogen Energy 35, 3991, (2010).
- L. Wen, B. Liu, C. Liu, X. Zhao, Journal of Wuhan University of Technology-Mater. Sci. Ed. 24, 258, (2009).
- K. Selvam, M. Swaminathan, J. Mol. Catal. A: Chem. 351, 52, (2011).
- S. Sakthivel, M.V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann, V. Murugesan, Water Res. 38, 3001, (2004).
- M. Nag, D. Guin, P. Basak, S.V. Manorama, Mater. Res. Bull. 43, 3270, (2008).
- K. Selvam, M. Swaminathan, RSC Adv. 2, 2848, (2012).
- M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69, (1995).
- D.A.H. Hanaor, C.C. Sorrel, J. Mater. Sci. 46, 855, (2011).
- B. Ohtani, J. Photochem. Photobiol. C. 11, 157, (2010).
- B. Ohtani, Chem. Lett. 37, 217, (2008).
- J. Coates in Encyclopedia of Analytical Chemistry, R.A. Meyers eds., Wiley & Sons Ltd, Chichester, 2000; pp.10815-10837.
- O. Carp, C.L. Huisman, A. Reller, Prog. Solid. State Chem. 32, 33, (2004) Eng. J. 310, 525, (2017).
- I. Asiltürk, H. Akkuş, Measurement. 44, 1679, (2011).
- R.R.N. Marques, M.J. Sampaio, P.M. Carrapi, C.G. Silva, T.S. Morales, G. Drazic, J.L. Faria, A.M.T. Silva, Catal. Today. 209, 108, (2013).
- H. Barndõk, M. Peláez, C. Han, W.E. Platten III, P. Campo, D. Hermosilla, A. Blanco, D.D. Dionysiou, Environ. Sci. Pollut. Res. 20, 3582, (2013).
- S.-D. Mo, W.Y. Ching, Phys. Rev. B: Condens. Matter Mater. Phys. 51, 13023, (1995).
- C. Dette, M.A. Pérez-Osorio, C.S. Kley, P. Punke, C.E. Patrick, P. Jacobson, F. Giustino, S.J. Jung, K. Kern, Nano Lett. 14, 6533, (2014).
- D.F. Perepichka, M.R. Bryce, Angew. Chem. Int. Ed. 44, 5370, (2005).