JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 61 No 4 (2016): Journal of the Chilean Chemical Society
Original Research Papers

THERMODYNAMIC CYCLE FOR CALCULATING AB-INITIO pKa VALUES OF TYPE (Me)2-N-Phenyl-(HC=CH)n-CHO (n = 0, 1, 2 and 3) MOLECULAR SYSTEMS

Hernández T. Carlos
Departamento de Química; Facultad de Ciencias Básicas; Universidad Metropolitana de Ciencias de la Educación
Published May 29, 2017
Keywords
  • Thermodynamic cycle,
  • PKa,
  • Proton affinity
How to Cite
Carlos, H. T. (2017). THERMODYNAMIC CYCLE FOR CALCULATING AB-INITIO pKa VALUES OF TYPE (Me)2-N-Phenyl-(HC=CH)n-CHO (n = 0, 1, 2 and 3) MOLECULAR SYSTEMS. Journal of the Chilean Chemical Society, 61(4). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/102

Abstract

Based on a thermodynamic cycle the pKa in aqueous phase of the series of molecules of the type (Me)2-N-Phenyl-(HC=CH)n-CHO with n = 0, 1, 2 and 3 have been determined. To that end the SM5.4 solvation model has been considered. The calculated pKa have been compared with the pKa measured experimentally. A study has also been made of the proton affinity in the gas phase and in aqueous phase. The calculation scheme agrees favorably, in a qualitative manner, considering favorably the molecular and solute-solvent interaction characteristics that determine the free energy that governs the acid-base properties of the molecules in the series. 

References

  1. Avdeef, A. (2012). Absorption and drug development: solubility, permeability, and charge state. John Wiley & Sons.
  2. Andricopulo, A. D., & Montanari, C. A. (2005). Mini reviews in medicinal chemistry, 5(6), 585-593.
  3. Jamzad, S., & Fassihi, R. (2006). Aaps Pharmscitech, 7(2), E17-E22.
  4. Prevedouros, K., Cousins, I. T., Buck, R. C., & Korzeniowski, S. H. (2006). Environmental Science & Technology, 40(1), 32-44.
  5. Manallack, D. T. (2007). Perspectives in medicinal chemistry, 1, 25.
  6. S.E. Blanco, M.C. Almandoz and F.H. Ferretti, Spectrochim. Acta A 61, (2005).
  7. B.M. Schmidt and E.-W. Knapp, Chemphyschem 5, (2004).
  8. Yao Fu, Lei Liu, Rui-Qiong Li, Rui Liu and Qing-Xiang Guo, J. Am. Chem. Soc. 26, (2004).
  9. (a)M.D. Liptak, K.C. Gross, P.G. Seybold, S. Feldgus and G.C. Shields, J. Am. Chem. Soc. 124 (2002), (b)M.D. Liptak and G.C. Shields, J. Am. Chem. Soc. 123 (2001). (c)K. Murlowska and N. Sadlej-Sosnowska, J. Phys. Chem. A 109 (2005).
  10. D. Jacquemin, E.A. Perpete, I. Ciofini and C. Adamo, J. Phys. Chem. A 112 (2008).
  11. H. Lu, X. Chen and C.-G. Zhan, J. Phys. Chem. B 111 (2007).
  12. X.-Q. Zhu, C.-H. Wang, H. Liang and J.-P. Cheng, J. Org. Chem. 72 (2007).
  13. I.E. Charif, S.M. Mekelleche, D. Villemin and N. Mora- Diez, THEOCHEM 818 (2007).
  14. R. F. Cookson Chem. Rev., 74 (1), (1974).
  15. SPARTAN ‘06 Quantum Mechanics Program: (PC/x86) Release 129v3 (Wavefunction Inc. Irvine, CA).
  16. Theoretica Chimica Acta, 98, (1997).
  17. Cox, B. G. (2013). Acids and bases: solvent effects on acid-base strength. Oxford University Press.
  18. Śmiechowski, M. (2010). Chemical Physics Letters, 501(1), 123-129.
  19. S. Miertus, E. Scrocco and J. Tomasi, Chem. Phys. 55 (1981).
  20. V. Barone and M. Cossi, J. Chem. Phys. A 102 (1998).
  21. Candee C. Chambers, Gregory D. Hawkins, Christopher J. Cramer Donald G. Truhlar J. Phys. Chem. Vol 100, (1996).
  22. Hawkins, G. D., Cramer, C. J., & Truhlar, D. G. (1996). Journal of Physical Chemistry, 100(51), 19824-19839.
  23. Hernández T. Carlos, Congreso Latinoamericano de Química, Salvador de Bahía, Brasil, 2005.
  24. Handbook.of.Chemistry.and.Physics.v2010.ISO-HS.
  25. Sharon G. Lias, Jo-Anne A. Jacksonla, Harold Argentarlb, Joel F. Liebman; J. Org. Chem. 50, (1985).-
  26. Walder Ray L. and Franklin J.L.; International Journal of Mass Spectrometry and Ion Physics, 36 (1960).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP