JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 61 No 2 (2016): Journal of the Chilean Chemical Society
Original Research Papers

STUDY OF THE REMOVAL OF 4–NITROPHENOL FROM AQUEOUS MEDIA BY ADSORPTION ON DIFFERENT MATERIALS

C. Matus
Pontificia Universidad Católica de Valparaíso, Facultad de Ciencias, Instituto de Química, Casilla 4059, Valparaíso
E. Camú
Pontificia Universidad Católica de Valparaíso, Facultad de Ciencias, Instituto de Química, Casilla 4059, Valparaíso
M. Villarroel
Universidad de Santiago de Chile, Facultad de Química y Biología, Casilla 40, Correo 33, Santiago
J. Ojeda
Universidad de Valparaíso, Facultad de Farmacia, Casilla 5001, Valparaíso
P. Baeza
Pontificia Universidad Católica de Valparaíso, Facultad de Ciencias, Instituto de Química, Casilla 4059, Valparaíso
Vol 61, No 2 (2016): Journal of the Chilean Chemical Society
Published June 10, 2016
Keywords
  • Adsorption,
  • 4–Nitrophenol,
  • Supports,
  • π-complexation
How to Cite
Matus, C., Camú, E., Villarroel, M., Ojeda, J., & Baeza, P. (2016). STUDY OF THE REMOVAL OF 4–NITROPHENOL FROM AQUEOUS MEDIA BY ADSORPTION ON DIFFERENT MATERIALS. Journal of the Chilean Chemical Society, 61(2). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/10

Abstract

The removal of 4–Nitrophenol (4–NP) from aqueous media by adsorption is studied in a batch system using different porous materials: activated carbon, zirconia, alumina, sepiolite, natural zeolite and 13X zeolite. Depending on their adsorption capacities, the best adsorbent was chosen to be impregnated with different levels of nickel (Ni) in order to study the adsorption by π-complexation in batch and continuous systems. The samples of Ni(x)/support (x= 2, 4, 6%) were prepared by wet impregnation and were characterised using the same method as with all the materials, by N2 adsorption-desorption using the BET method, surface acidity and Z potential measurements by electrophoretic migration. The samples were measured in a UV-Vis electrophotometer at a wavelength of 318 nm, while the adsorption capacity of the material in the batch system was determined by calculating the difference in concentration once the adsorbent became saturated after an initial concentration of ~20 ppm, and in the continuous system this was done by integrating the area under the adsorption curve. The results suggest that adsorption capacity depends on the specific BET area, apparent acid strength and the IEP of each support, and that it varies with the addition of Ni.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP