A 2D/3D-QSAR STUDY ON BIOLOGICAL ACTIVITIES OF 1,2-ETHYLENDIAMINE DERIVATIVES AS ANTI-TUBERCULOSIS DRUGS
- Tuberculosis,
- quantitative structure-activity relationship,
- 1,
- 2-ethylenediamine derivatives,
- Genetic Algorithm and Imperialist Competitive Algorithm
- Artificial Neural Network ...More
Copyright (c) 2019 Journal of the Chilean Chemical Society
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
In this work quantitative structure-activity relationship (QSAR) study has been done on 1,2-ethylenediamine derivatives as anti-tuberculosis drugs. Genetic algorithm (GA), artificial neural network (ANN), multiple linear regressions (stepwise-MLR) and Imperialist Competitive Algorithm (ICA), were used to create the nonlinear and linear QSAR models. The root-mean square errors of the training set and the test set for GA–ANN models using the jack-knife method, were 0.1402, 0.1304 and Q2 = 0.94. Also, the R and R2 values 0.85, 0.73 in the gas phase were obtained from a GA-stepwise-MLR model. Q2 of training set for PLS was 0.52. The results obtained from this work indicate that ANN and ICA models are more effective than other statistical methods and exhibit reasonable prediction capabilities. The best descriptors are G3u, HATS2e, F02(C-N), GGI10, RDF040m, Mor22p, Mor05p, TIC4, H4e, H-052, G2m and G1e.
References
- F. J. DuMelle, P. C. Hopewell, TB Notes News let. 1 , 23–27. (2000).
- J. B . Jr.Bass , L. S . Farer , P. C. Hopewell , Am. J. Respir. Crit Care Med . 149, 1359–1374. (1994).
- C. R. Jr.Horsburgh , S. Feldman, R. Ridzon, Clin. Infect Dis . 31, 633– 639. (2000).
- P. A. Gross, T. L. Barrett , E. P. Dellinger, P. J. Krause , W. J. Martone, J. E. Jr. McGowan , R. L. Sweet, R. P. Wenzel, Clin. Infect Dis . 18, 421. (1994).
- R. Hosseini, H. Salehipoor, Int. J. Struct. Stab. Dy . 12, No. 3, 1250019 . (2012).
- E. Atashpaz-Gargari , C. Lucas. Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. Evolutionary Computation, CEC 2007. IEEE Congress on , 2007; pp. 4661-4667.
- E. Atashpaz-Gargari , C. Lucas. Designing an optimal PID controller using Colonial Competitive Algorithm. First Iranian Joint Congress on Intelligent and Fuzzy Systems, 2007.
- C. Sarbu , C. Onisor, M. Poša, Talanta .75, 651–657. (2008).
- M. P. Freitas, J. A. Martins , Talanta. 67, 182–186. (2005).
- K. Valko, J. Chromatog. A. 1037, 299–310. (2004).
- K. Tang, T. Li, Anal. Chem. Acta. 476 , 75–92. (2003).
- H. Gonzalez-Diaz, I. Bonet, C. E. Teran, Eur. J. Med.Chem. 42, 580– 585. (2007).
- S. Vilar, L. Santana , E. Uriarte, J. Med. Chem. 49, 1118–1124. (2006).
- C. Tang, P. A. Almeida Fishwick Times series forecasting using neural networks vs. Box–Jenkins methodologySimulations, Simulations Councils, 1991; pp. 303–310.
- Marina. Protopopova, Colleen. Hanrahan, Boris Nikonenko, J. Antimicrob. Chemother . 56, 968–974. (2005).
- R. Todeschini, V. Consonni, Handbook of Molecular Descriptors; WILEY-VCH, Verlag GmbH. Vol. 11, 2000; p 516.