RISK ASSESSMENT OF TRACE METAL CONCENTRATIONS IN SEDIMENTS OF THE MAIPO RIVER BASIN AND ITS RELATIONHIP WITH BIACUMULATION IN BENTHIC ORGANIM
- Key words: sediments, benthic organism, Enrichment Factor, Geo accumulation index, sediments toxicity TEC and PEC, bioaccumulation, Trace elements, EAA
Copyright (c) 2023 SChQ
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
ABSTRACT
Trace elements in aquatic ecosystems are considered as major pollutants due to their environmental persistence, toxicity and ability to be incorporated into food webs. Contaminated sediments represent a threat to benthic macroinvertebrates which in turn expose high trophic organisms to hazardous trace elements, therefore metals accumulated in benthic organisms can also be bio concentrated in food webs. Direct toxic effects of metals include changes in diversity and abundance of benthic invertebrates while, indirect effects include modifications of species interactions and reductions in food quality. In this work, we study the potentially toxic metal concentrations in both sediments and benthic macroinvertebrates in the Maipo River basin (central Chile) evaluating the risk assessment of sediment, toxicity to the biota and bioaccumulation in the organisms.
Sediments and benthic organisms were sampled in spring (October-December) 2016 from four sites of the Maipo River basin. Twelve trace elements (As, Al, Cd, Cu, Cr, Hg, Fe, Mn, Mo, Ni, Pb and Zn) were determined by AAE. The Geo accumulation index showed that Zn was moderate to strong pollute in all sites and the enrichment factor showed that there were no important anthropic impacts in the river. High level of contamination was found for Cu in PEL and the pollution index showed that PEL was extremely polluted. Three (Cu, Mn and Zn) out of the five metals analyzed were the elements which presented the largest toxicity to organisms in these aquatic systems based on the Threshold Effect Concentration (TEC) and Probable Effect Concentration (PEC) analysis. Most of the metals analyzed did not show bioaccumulation; however, Ni and Pb were the metals with the highest bioaccumulation factor in all the studied sites.
Key words: sediments, benthic organism, Enrichment Factor, Geo accumulation index, sediments toxicity TEC and PEC, bioaccumulation, Trace elements, EAA
References
- REFERENCES
- Y. Iwasaki, T. Kagaya, K-I. Miyamoto, H. Matsuda, Environm. Toxicol. Chem. 28, 354 (2009).
- J. K. Bentum, M. Anang, K. O. Boadu, E.J. koranteng-Addo, E.O. Antwi, Bull. Chem. Soc. Ethiop, 25, 191, (2011).
- K.E. Carpenter, Ann. Appl. Biol. 12, 1, (1925).
- S. Gupta, U.S.Banerjee, Int. J. Geomat. Geosci., 2 , 853, (2012).
- R. Hanson, D.K. Dodoo, D.K. Essumang, J. BlaY, K. Yankson, Bull. Environm. Contam. Toxicol. 79 544,(2007).
- S. Obiri, Environm. Monit. Assess. 130, 455, (2007).
- N. Singh, J. Koku, B. Balfors, J. Creative Commun., 2, 361, (2007).
- A. Demirbas, J. Hazard Mater. 157, 220, (2008).
- D.M. Templeton, F. Ariese, R. Cornelis, i.Q. Danielsson, H. Muntau, H.P. van Leeuwen, R. Lobiñski, Pure Appl. Chem., 72, 1453, (2000).
- C. Pettersen, K. Hakanson, S. Karlson, B. Allard, Water Res. 27, 863, (1993).
- Z. Hseu, Z. Chen, C. Tsai, C. Tsui, S. Cheng, C. Liu, H. Lin, Water Air Soil Pollut., 141, 189, (2000).
- A. Aksoy, D. Demirezen, F. Duman, Water Air Soil Pollut. 164, 241, (2005).
- H. l. Nguyen, M. Leermakers, J. Osán, S. Török, W. Baeyens, Sci. Total Environ., 340, 213, (2005).
- L.K. Boamponsem, J. I. Adam, S.B. Dampare, E. Owusu-Ansah, G. Addae , J. Chem. Pharm. Res., 2, 504, (2010).
- C.p. Hawkins, M.L. Murphy, N.H. Anderson, Ecology, 63, 1840, (1982).
- Q.A. Hussain, A.K. Pandit, Int. J. Fish. Aquat. Sci., 4, 114, (2012).
- A. Begum, S. Harikrishna, I. Khan, Int. J. Chem. Tech. Res. 1, 245, (2009).
- M. Klavinš, A. Briede, A. Parele, V. Rodinov, I. Klavina, Chemospher, 36, 3043, (1998).
- R.W. Merritt, K.W. Cummins, An Introduction to the Aquatic Insects of North America Second ed. Kendall Hunt, Bubuque, Iowa, (1984).
- E.E. Dodge, T.L. Theis, Environ. Sci. Technol. 13, 1287, (1979).
- L. Hare, A. Tessier, P.G.C. Campbell, Can. J. Fish. Aquat. Sci. 48, 1481, (1991).
- C.Yoshimura, K. Tockner, T. Omura, O. Moog O 2006 Limnology 7, 63, (2006).
- D.J.H. Phillips, P.S. Rainbow, Biomonitoring of Trace Aquatic Contaminants. Elsevier Applied Science, London. 371 p (1993).
- E.T.H.M. Peeters, R. Gylstra, J.H. Vos, Hydrobiologia 519, 103, (2004).
- T. Mangadze, Sci. Total Environ., 695, 13391, (2019).
- C. Wang, B. Viktória, C. Stenger-Kovács, X. Li, A. Abonyi, Hydrobiologia 818, 163, (2018).
- A. Guilpart, J.M. Roussel, J. Aubin, T. Caquet, M. Marle, Ecol. Indic., 23, 356, (2012).
- I.A. Wright, M.M. Ryan, Hidrobiología, 772, 103, (2016).
- A. Chakona, C. Phiri, C.H.D. Magadza, L. Brendonck, Hydrobiologia 607, 199, (2008).
- A. Chakona, C. Phiri, T. Chinamaringa, N. Muller, Aquat. Ecol., 43, 1095, (2009).
- T. Bere, B.B. Nyamupingidza, Hydrobiologia, 722, 223, (2014).
- P.M. Kiffney, W.H. Clements, Environ. Toxicol. Chem, 15, 1352 (1996).
- P. M. Chapman, F. Wang, C. Janssen, G. Persoone, H. E. Allen, Can. J. Fish. Aquat. Sci., 55, 2221, (1998).
- L. Hare, Crit. Rev. Toxicol, 22, 327, (1992).
- P.M. Kiffney, W.H. Clements, Environ Toxicol Chem, 12, 1507, (1993).
- A.M. Farag, D.F. Woodward, J-N. Goldstein, W. Brumbaugh, J.S. Meyer, Arch. Environ. Contam. Toxicol. 34, 119, (1998).
- W.H. Clements, Am. Benthol. Soc., 13, 30, (1994).
- W.H. Clements, Ecol Appl., 9, 1073, (1999).
- D.M. Carlisle, J. Aquat. Ecosyst. Stress Recovery, 7, 155, (2000).
- A.H. Lorenzi, D.J. Cain, F. Parchaso, J.K. Thompson, S.N. Luoma, M.I. Hornberger, J.L. Dyke, Water monitoring of trace metals and a benthic community near the Palo Alto Regional Water Quality Control Plant in south San Francisco Bay, California: 2007. U.S. Geological Survey Open File Report 2008-1180. California: Menlo Park. 127 p (2008).
- Dirección General de Aguas. Diagnóstico y clasificación de los cursos y cuerpos de agua según objetivos de calidad, cuenca del Rio Maipo. Ministerio de Obras Públicas, Gobierno de Chile, (2004).
- C. Vega-Retter, P. Muñoz-Rojas, I. Vila, S.V. Copaja, D. Veliz, Pop. Ecol. 56, 569,(2014) .
- C. Vega-Retter, I. Vila, D. Veliz, Evol. Biol. 42, 156, (2015).
- C. Vega-Retter, N. Rojas-Hernandez, I. Vila, R. Espejo, D.E. Loyola, S.V. Copaja, M. Briones, A.W. Nolte, D. Veliz, Sci Rep, 8, 4820, (2018).
- M. Briones, Efecto de la contaminación y el tipo de cauce sobre la estructura trófica del Río Maipo, usando como modelo a los macroinvertebrados bentónicos y al pejerrey Basilichthys microlepidotus. Tesis Magister en Ciencias Biológicas, Universidad de Chile, (2019.
- R. Arocena, L. Aubriot, S. Bonilla, G. Chalar, D. Conde, G. Daners, F. Scasso, Métodos en Ecología de aguas continentales, con ejemplos de limnología en uruguay. Montevideo: DIRAC. EPA Method 3015, (1999).
- S. Simpson, G. Batley, A. Chariton, J. Stauber, C. King, J. Chapman, W. Maher, Handbook for Sediment Quality Assessment, (2005).
- H. Khademi, M. Gabarrón, A. Abbaspour, S. Martínez-Martínez, A. Faz, J.A. Acosta, Chemosphere, 217, 705, (2019).
- M.H.F. Monged, H.B. Hassan, S.A.El-Sayed, Water Air. Soil Pollut. 231, 338, (2020).
- G. Müller, Geol J., 2, 108, (1969).
- N. Adimalla, J. Chen, H. Qian, Ecotoxicol. Environ. Saf., 194, 110406, (2020).
- J.C.Egbueri, B.U. Ukah, O.E. Ubido, C.O. Unigwe, Int. J. Environ. Anal. Chem 98, 1, (2020) .
- C. Men, R. Liu, F. Xu, Q. Wang, L. Guo, Z. Shen, Sci. Total Environ., 612, 138, (2018).
- H. Khademi, M. Gabarrón, A. Abbaspour, S. Martínez-Martínez, A. Faz, J. A. Acosta, Chemosphere, 217, 695, (2019).
- D. Relic, S. Sakan, I. Andelkovic, A. Popovic, D. Dordevic, Molecules, 24, 2139, (2019).
- H-H. Jiang, L-M. Cai, H-H. Wen, G-C. Hu, L-G. Chen, J. Luo, Sci. Total Environ., 701, 134466, (2020).
- D.L. Tomlinson, J.G. Wilson, C.R. Harris, D.W. Jeffrey, Helol. Mees., 33, 566, (1980).
- D. Relic, S. Sakan, I. Andelkovic , A. Popovic, D. Dordevic, Molecules, 24, 2139, (2019).
- J.C. Egbueri, B.U. Ukah, O.E. Ubido, C.O. Unigwe, Int. J. Environ. Anal. Chem., 98, 1, (2020).
- L. Hakanson, Water Res., 14, 975, (1980).
- Y. Gan, X. Huang, S. Li, N. Liu, Y.C. Li, A. Freidenreich, J. Clean. Prod., 221, 98, (2019).
- J. Li, G. Wang, F. Liu, L. Cui, Y. Jiao, Source Apportionment and Ecological-Health Risks Assessment of Heavy Metals in Topsoil Near a Factory Ecological-Health Risks Assessment of Heavy Metals in Topsoil Near a Factory, Central China. Berlin: Springer, (2020)
- D.D. MacDonald, C. Ingersoll, T. Berger, Contam. Toxicol. 39, 20, (2000).
- T. Zoumis, A. Schmidt, L. Grigorova, W. Calmano, Sci Total Environ., 266, 195, (2001).
- L. Nizzetto, M. Macleod, K. Borgå, A. Cabrerizo, J. Dachs, A.D. Guardo, D. Ghirardello, K.M. Hansen, A. Jarvis, A. Lindroth, B. Ludwig, D. Monteith, J.A. Perlinger, M. Scheringer, L. Schwendenmann, K.T. Semple, L.Y. Wick, G. Zhang, K.C. Jones, Environ. Sci. Technol., 44, 6526, (2010).
- W. Salomons, N.M. De Rooij, H. Kerdijk, J. Bril, Hydrobiologia, 149, 13, (1987).
- T.M. Remaili, S.L. Simpson, E.D. Amato, D.A. Spadaro, C.V. Jarolimek, D.F. Jolley, Environ. Pollut., 208, 590, (2016).
- L. Mustajärvi, E. Eek, G. Cornelissen, A.K. Eriksson-Wiklund, E. Undeman, A. Sobek, Environ. Pollut., 231, 854, (2017).
- P.M. Linnik, I.B. Zubenko, Lakes Reserv. Res. Manag., 5, 11,(2000).
- J. Eggleton, K.V. Thomas, Environ. Int., 30, 973, (2004).
- A. Sobek, K. Wiberg, K.L. Sundqvist, P. Haglund, P. Jonsson, G. Cornelissen, Sci Total Environ., 487, 46, (2014).
- S.V. Copaja, G. DíaZ, R. Toro, R. Tessada, P. Miranda, J.R. Morales, J. Chilean Chem. Soc., 57, 1199, (2012).
- S.V. Copaja, F. Muñoz, J Chilean Chem Soc., 63, 3788, (2018).