JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 66 No 3 (2021): Journal of the Chilean Chemical Society
Original Research Papers

A COMPUTATIONAL STUDY OF STEVIOL AND ITS SUGGESTED ANTICANCER ACTIVITY. A DFT AND DOCKING STUDY.

Lorena Meneses
Pontificia Universidad Catolica del Ecuador
Sebastian Cuesta
Pontificia Universidad Catolica del Ecuador
Guillermo Salgado
Universidad de Concepcion
Patricio Muñoz
Universidad Andres Bello
Assia Belhassan
Moulay Ismail University of Meknes
Lorena Gerli
Universidad Catolica de la Santisima Concepcion
Luis Humberto Mendoza-Huizar
Universidad Autónoma del Estado de Hidalgo
Published September 14, 2021
Keywords
  • Steviol,
  • BCL-2,
  • antiapoptotic,
  • acceptor-donor,
  • DFT
How to Cite
Meneses, L., Cuesta, S., Salgado, G., Muñoz, P., Belhassan, A., Gerli, L., & Mendoza-Huizar, L. H. (2021). A COMPUTATIONAL STUDY OF STEVIOL AND ITS SUGGESTED ANTICANCER ACTIVITY. A DFT AND DOCKING STUDY. Journal of the Chilean Chemical Society, 66(3), 5291-5294. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/1799

Abstract

In the present, study we analyzed the electronic properties of Steviol, the Stevia rebaudiana metabolite, and its interaction with antiapoptotic protein BCL-2. The ionization potential and electrophilicity index values were evaluated in the framework of the DFT, and these values suggest that Steviol may form ligand-receptor interactions. Also, the bond dissociation energy and the electrostatic potential distribution of Steviol reveal its antioxidant behavior. Docking studies were performed to evaluate the feasibility of this molecule to interact with antiapoptotic protein BCL-2. However, no hydrogen bonds were found in the pocket site, instead six interactions, including alkyl and π-alkyl type were formed, suggesting that the possible most feasible mechanism for anticancer activity would be through free radicals scavenging.

 

1799.jpg

References

  1. J. Chen, Y. Xia, X. Sui, Q. Peng, T. Zhang, J. Li, J. Zhang, Oncotarget (2018), 9, 26299–26308.
  2. M. Reddy Mallu, S. Vemula, R. K. Kante, . Pharm. Sci. Res. (2019), 11, 2016–2018. https://www.jpsr.pharmainfo.in/Documents/Volumes/vol11issue05/jpsr11051962.pdf. Accessed April 26, 2021.
  3. E. Gupta, S. Kaushik, S. Purwar, R. Sharma, A. Balapure, S. Sundaram, Pharmacogn. Mag. (2017), 13, 345.
  4. S. Ghanta, A. Banerjee, A. Poddar, S. Chattopadhyay, J. Agric. Food Chem. (2007), 55, 10962–10967.
  5. C. Panagiotou, C. Mihailidou, G. Brauhli, O. Katsarou, P. Moutsatsou, Mol. Cell. Endocrinol. (2018), 460, 189–199.
  6. T. Pasqualli, P. E. E. Chaves, c, L. da V. Pereira, É. A. Serpa, L. F. S. D. Oliveira, M. M. Machado, Immunopharmacol. Immunotoxicol. (2020), 42, 504–508.
  7. D. J. Brusick, Food Chem. Toxicol. (2008) 46, S83-91.
  8. A. M. Petros, A. Medek, D. G. Nettesheim, D. H. Kim, H. S. Yoon, K. Swift, E. D. Matayoshi, T. Oltersdorf, S. W. Fesik, Proc. Natl. Acad. Sci. U. S. A. (2001), 98, 3012–3017.
  9. S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E. E. Bolton, Nucleic Acids Res. (2019), 47, D1102–D1109.
  10. R. Dennington, T. Keith, J. Millam, Gaussview, Version 5., 2016.
  11. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. (2008), 120, 215–241.
  12. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. (2011), 32, 1456–1465.
  13. S. Grimme, J. Comput. Chem. (2006), 27, 1787–1799.
  14. J. Da Chai, M. Head-Gordon, J. Chem. Phys. (2008), 128, 84106.
  15. J. Da Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. (2008), 10, 6615–6620.
  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, (2016).
  17. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B (2009), 113, 6378–6396.
  18. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. (2005), 105, 2999–3093.
  19. R. G. Pearson, Inorganica Chim. Acta (1992), 198–200, 781–786.
  20. R. G. Parr, L. V. Szentpály, S. Liu, J. Am. Chem. Soc. (1999), 121, 1922–1924.
  21. D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant, T. Sajed, D. Johnson, C. Li, Z. Sayeeda, N. Assempour, I. Iynkkaran, Y. Liu, A. MacIejewski, N. Gale, A. Wilson, L. Chin, R. Cummings, Di. Le, A. Pon, C. Knox, M. Wilson, Nucleic Acids Res. (2018), 46, D1074–D1082.
  22. H. M. Berman, T. Battistuz, T. N. Bhat, W. F. Bluhm, P. E. Bourne, K. Burkhardt, Z. Feng, G. L. Gilliland, L. Iype, S. Jain, P. Fagan, J. Marvin, D. Padilla, V. Ravichandran, B. Schneider, N. Thanki, H. Weissig, J. D. Westbrook, C. Zardecki, Acta Crystallogr. Sect. D Biol. Crystallogr. (2002), 28, 235–242.
  23. G. Morris, R. Huey, W. Linkstrom, M. Sanner, R. Belew, D. Goodsell, Olson, J. Comput. Chem. (2009), 16, 2785–2791.
  24. L. Schrödinger, Thomas Hold. (2015).
  25. Y. Liu, M. Grimm, W. tao Dai, M. chun Hou, Z. X. Xiao, Y. Cao, Acta Pharmacol. Sin. (2020), 41, 138–144.
  26. O. Trott, A. J. Olson, J. Comput. Chem. (2010), 31, 455–461.
  27. R. A. Laskowski, M. B. Swindells, J. Chem. Inf. Model. (2011), 51, 2778–2786.
  28. M. C. Flores, E. A. Márquez, J. R. Mora, Med. Chem. Res. (2018), 27, 844–856.
  29. E. Cortes, J. R. Mora, E. Márquez, Crystals (2020), 10, 692.
  30. B. B. Touré, K. Miller-Moslin, N. Yusuff, L. Perez, M. Doré, C. Joud, W. Michael, L. Dipietro, S. Van Der Plas, M. McEwan, F. Lenoir, M. Hoe, R. Karki, C. Springer, J. Sullivan, K. Levine, C. Fiorilla, X. Xie, R. Kulathila, K. Herlihy, D. Porter, M. Visser, ACS Med. Chem. Lett. (2013), 4, 186–190.
  31. R. W. Birkinshaw, J. nan Gong, C. S. Luo, D. Lio, C. A. White, M. A. Anderson, P. Blombery, G. Lessene, I. J. Majewski, R. Thijssen, A. W. Roberts, D. C. S. Huang, P. M. Colman, P. E. Czabotar, Nat. Commun. (2019), 10, 1–10.
  32. K. Palanichamy, A. Joshi, T. Mehmetoglu-Gurbuz, M. F. Bravo, M. A. Shlain, F. Schiro, Y. Naeem, H. Garg, A. B. Braunschweig, J. Med. Chem. (2019), 62, 4110–4119.
  33. O. Francesconi, C. Nativi, G. Gabrielli, I. De Simone, S. Noppen, J. Balzarini, S. Liekens, S. Roelens, Chem. - A Eur. J. (2015), 21, 10089–10093.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP