- Elovich model, trace elements, sediment, Sorption-desorption, Maipo River.
Copyright (c) 2020 Sylvia Violeta Copaja, David Vèliz, Caren Vega, Lidia Mauro
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
We studied the adsorption-desorption of Cu, Mn, Pb and Zn in Maipo river basin, one of the most perturbed rivers in Chile, and thus determined its tolerance to the addition of these metals into the sediments and the possibility of transferring the metals from the sediments to the water column. Sediments were sampled from six sites from the river basin and characterized by their pH, electrical conductivity, organic carbon, total organic carbon, water soluble phosphorus and texture. Batch sorption and kinetics experiments were conducted to obtain the retained amounts onto the sediment samples. The initial concentration of trace elements in the sediment was quantified by AAS. The metals were present in most of the sites. Sorption parameters such as Kd and Koc were determined. Metals were adsorbed in the sediment, with Mn showing the lowest affinity, Kd and Koc values support these results. Desorption less than 1% were observed for Cu, while Pb and Zn ranged from 0.6% to 6.8% and those for Mn ranged from 0% to 17.6% across sites. The tolerance of the Maipo River to metal adsorption in sediments was as follows: Pb˃ Cu˃ Zn ˃Mn. Desorption analysis showed that both Zn and Mn could be transferred from the sediment to the water column. The strongest correlation occurs between the pH and Kd-Pb, indicating that at higher pH values, the Pb adsorption was unfavorable, while the correlation was moderate for Cu, Mn and Zn. On the other hand, there are positive correlations between pairs of metals such as Mn-Cu, Zn-Cu, and Zn-Mn, indicating the competition of these metals for the adsorbent sites. The high concentration of Mn found in the sediment and the possibility of being transferred to the water column, due to its easy of desorption, suggest concern due to its potential risk to aquatic biota.
References
- P. Ndiba, L. Axe, T. Boonfueng , Environ Sci Technol, 42, 920, (2008).
- E. P. Nobi, E. Dilipan, T. Thangaradjou, k. Sivakumar, L. Kannan, Coast Shelf Sci., 87, 253, (2010).
- C. Zhang, Z. Yu, G-M. Zeng, M. Jiang, Z-Z. Yang, F. Cui, M-Y. Zhu, L-Q. Shen, L. Hu, Environ Int., 73, 270 (2014).
- C. k. Jain, D. C. Singhai, M. K. Sharma, J Hazard Mater, 18, 231, (2004).
- X. Wen, Q. Du, H. Tang, Environ Sci Technol, 32, 870, (1998).
- A. D. Ape, V. Tare, P. Bose, J Hazard Mater 128, 164, (2006).
- B. Gu, L. Liang, M. J. Dickey, X. Yin, S, Dai, Environ Sci Technol, 32, 3366, (1998).
- M. N. O. Ajima, P. C. Nnodi, O. A. Ogo, G. S. Adaka, D. I. Osuigwe, D. C. Njoku, Environ Monit Assess, 187, 768, (2015).
- J. M. Bubb, J. N. Lester, Water, Air, Soil Pollut, 78, 279, (1994).
- S. V. Copaja, G, S. Muñoz, V. R. Nuñez, C. Perez, I. Vila, D. Veliz, Bull Environ Contam Toxicol, 97, 24. (2016a).
- C. K. Jain, D. Ram, Water Res, 31, 154(1997).
- J-G. Lin J, S-Y. Chen, Environ Int., 24, 345, (1998).
- S. Wang, C. N. Mulligan, Environ Geochem Health, 28, 197, (2006).
- M. Cabral, A. Toure, G. Garcon, C. Diop, S. Bouhsina, D. Dewaele, F. Cazier, D. Courcot, A. Tall-Dia, P. Shirali, A. Diouf, M. Fall, A. Verdin, Environ Pollut, 206, 247, (2015).
- S. L. Simpson, S. C. Apte S, G. E. Batley, Environ Sci Technol, 34, 4533 (2000).
- M. Murakami, M. Fujita, H. Furumai, I. Kasuga, F. Kurisu, J Hazard Mater, 164, 707, (2009).
- D. L. Sparks, Kinetics of Soil. Chemical Process. Academic Press, Inc., New York, 1989.
- S. Rose, Chem Geol, 74, 365, (1989).
- W. Lampert, U. Sommer U. Limnoecology, the ecology of lakes and streams. Second edition. Oxford University Press, Oxford, UK., 2007.
- M. N. Moore, D. M. Lowe, D. R. Livingstone, D. Dixon, Water Sci Technol, 18, 223, (1986).
- D. N. Weber, Amer. Zool, 37, 343, (1997).
- D. E. Kime, M. Ebrahimi, K. Nysten, I. Roelants, E. Rurangwa, H. D. Moore, F. Ollevier, Aquat Toxicol , 36, 223, (1996).
- D. A. Casciano, Introduction: Historical perspectives of genetic toxicology. In: Genetic Toxicology (Li AP, Heflich RH eds). CRC Press, Boca Raton, Florida, pp 1–12, 1991.
- S. F. Zakrzewski, Principles of Environmental Toxicology. America Chemical Society Books, Washington, 1991.
- S. V. Copaja, C. Pérez , C. Vega-Retter, D. Veliz, Bull Environ Contam Toxicol, 99, 695, (2017).
- S. v. Copaja S, M. X. Molina, R. M. Tessada, J Chil Chem Soc, 59, 2353, (2014).
- S. V. Copaja, V. R. Nuñez, G. S. Muñoz, G. L. González, I. Vila, D. Veliz, J Chil Chem Soc, 60, 2797, (2016b).
- S. V. Copaja, F. J. Muñoz, J Chil Chem Soc, 63, 3788, (2018).
- S.I. Simpson, G. E. Batley, A. S. Charlston, J. L. Dtauber, C. K. King, J. C. Chapman, R. V. Hyne, S. A. Gale, A. C. Roach, W. A. Maher, J. J. SharyanHandbook for Sediment Quality Assessment (CSIRO Bangor, NSW). 117 pp, 2005.
- A. Sadzawka, M. A. Carrasco, R. Grez, M. L. Mora, H. Flores, A. Neuman, Métodos de Análisis de Suelos. Instituto de Investigaciones Agropecuarias (INIA). Serie Actas INIA 34:59–79, 2006.
- L. C. Blackemore, P. L. Scarle, B. K. Daly, Methods for Chemical of Analysis of Soils, New Zealand Soil Bureau Scientific Report 10A. 102 pp, 1987.
- EPA Method 3051, Microwave assisted acid digestion of sediments, sludges, soils, and oils, 1994.
- S. Venkatramanan, S. Chung, T. Ramkumar, G. Gnanachandrasamy, S. Vasudevan, Sci. Total Environ, 4, 109, (2013).
- C. Gagnon, M. Arnac, J. R. Brindle, Wat Res, 26, 1067, (1992).
- F. Burriel, F. Marti, S. Lucena-Conde, J. Arribas-Jimeno, Hernández-Méndez Química Analítica Cualitativa. Sixteenth edition, editorial Papaninfo, Madrid, España, 2003.
- C. A. B. Garcia, M. S. Barreto, E. A. Passos, J. Patrocínio, H. Alves, J Braz. Chem. Soc., 20, 1334, (2009).
- Y. W. Chiang, K. Ghyselbrecht, R. M. Santos, J. A. Martens, R. Swennen, V. Cappuyns, B. Meesschaert, Chem Eng J, 200-202, 405, (2012).
- B. A. Schumacher, Methods for the determination of total organic carbon (TOC) in soils and sediments. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-02/069 (NTIS PB2003-100822), 2002.
- Y. Qi, J. Zhu, Q. Fu, H. Hu, Q. Huang, A. Violante, J Soils Sediments, 16, 2203, (2016).
- M. P. Lopez, Ingeniería del Agua, 16, 273, (2009).
- D. Persaud, R. Jaagumagi, A. Hayton, Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of the Environment. Ottawa, Canadá, 23 pp, 1993.
- D. Pal, S. K. Maiti, Environ Sci Pollut Res Int, 25, 12464, (2018).
- Feng-ChinWu,; Ru-Ling Tsengb,; Ruey-Shin Juang; Chemical Engineering Journal, 150, 366, (2009).
- C. H. Giles, T. H. MacEwan, S. N. Nakhwa, D. Smith. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface, Chem. Soc. 111, 3973, 1979.
- W. Zhong , Y. Zhang, Z. Wu , R. Yang , X. Chen, J. Yang, I. Zhu, Ecotoxicol Environ Saf, 157, 343, (2018).
- OECD. Guidelines for testing of chemicals, Section 1: Adsorption-Desorption using batch equilibrium method in soils. Environmental Health and Safety Division, Organization for Economic Co-operation and Development (OECD), Environment Directorate, Paris, France, 2000.
- X. Chen, Modeling of experimental adsorption isotherm data. Information 6, 14, (2015).
- R. M. Shariff, J Univ Anbar, Pure Sci 3, 13, (2009).
- K. S. Ahmad, N. Rashid, Journal of the Chemical Society of Pakistan, 37, 841, (2015).
- R. S. Graham, K. A. Sloman, Aquat Toxicol, 68, 369, (2004).
- J. H. Kim, J. C. Kang, Toxicol Pharmacol, 46, 211, (2016).
- F-C. Wu, R-L.Tsengb, R-S. Juang, Chem Eng J, 150, 366 (209).
- D. P. Perl, Cc. W. Olanow, J Neuropathol Exp Neurol , 66, 675, (2007).
- M. T. Colomina, J. L. Domingo, J. M. Llobet, J. Corbella, Vet Hum Toxicol, 38, 7, (1996).