A CHEMOMETRIC APPROACH TO THE INFLUENCE OF THE SYNTHESIS PARAMETERS ON THE OPTICAL RESPONSE OF GOLD NANOPARTICLES AND STUDY OF THEIR ELECTROPHORETIC DEPOSITION ON SILICON
- Gold nanoparticles,
- AFM,
- TEM,
- Experimental design,
- Electrophoretic deposition
Copyright (c) 2017 Renzo Milesi L., Emilio Navarrete S., Javier Román S., Víctor Rojas C., Rodrigo Henríquez N., Ricardo Schrebler G., Ricardo Córdova, Eduardo C. Muñoz
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
This study describes gold nanoparticle synthesis in an aqueous solution by reducing tetrachloroauric acid (HAuCl4), using sodium citrate as a reducing agent. Synthesis was optimized through an experimental design, and particle characterization was obtained through UV-Vis spectroscopy. In a first stage, a factorial design was conducted to establish the significance of the variables used in the synthesis, i.e. reducer concentration, temperature, stirring rate. In the second stage, the obtained nanoparticles were positioned on a silicon p-type substrate through electrophoretic deposition. The modified substrates were characterized by means of reflectance measurements and their morphology using transmission electron microscopy (TEM) and atomic force microscopy (AFM). Finally, a brief discussion was carried out concerning the sizes of the determined nanoparticles based on a model taken from the literature that relates maximum absorption with the nanoparticle diameter, comparing these with the sizes obtained through AFM and TEM observation.
References
- B. Juárez, An. Quím. 107, 229, (2011).
- D. Huang, F. Liao, S. Molesa, D. Redinger, V. Subramanian, J. Electro¬chem. Soc. 150, G412, (2003).
- M. E. Ali, U. Hashim, S. Mustafa, Y. B. Che Man, Kh. Islam, J. Nanoma¬ter. (2012) doi:10.1155/2012/103607.
- R. Zanella, Mundo Nano, 5, 69, (2012).
- K. R. Brown, M. J. Natan. Langmuir. 14, 726, (1998).
- Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, A. Fujishi¬ma,. Nat. Mater. 2, 20, (2003).
- S. Martínez, T. Serrano, I. Gómez, A. Hernández, Bol. Soc. Esp. Ceram. V, 46, 97, (2007).
- D. Beer, P. Gale, Angew, Chem. Int. Engl. 40, 486, (2001).
- J. Lehn, Supramolecular Chemistry: Concepts and perspectives, VCH, Weinheim. 1995.
- M. Warner, S. Reed, J. Hutchison, Chem. Mater. 12, 3316, (2000).
- S. Galvagno, G. Parravano, J. Catal. 55, 178, (1978).
- A. Alivisatos, K. Johnson, X. Peng, T. Wislon, C. Loneth, M. Bruchez, P. Schultz. Nature. 382, 609, (1996).
- T. Taton, R. Mucic, C. Mirkin, R. Letsinger, J. Am. Chem. Soc. 122, 6305, (2000).
- G. Mie, Ann. Phys. 3, 377, (1908).
- S. Chen, K. Huang, Langmuir. 16, 2014, (2000).
- J. Kulys, R. Stupak, The Open Science Journal. 2, 34, (2008).
- Z. JingJing, Z. JunJie. Sci. China Ser. B-Chem. 52, 815, (2009).
- J. Pingarrón, P. Yáñez-Sedeño, A. González-Cortés. Electrochimica Acta. 53, 5848, (2008).
- J. Jia, B. Wang, A. Wu, G. Cheng, Z. Li, S. Dong. Anal. Chem. 74, 2217, (2002).
- H. Cai, Y. Wang, P. He, Y. Fang. Analytica Chimica Acta. 469, 165, (2002).
- J. Turkevich. Gold Bull. 18, 125, (1985).
- R. C. Bailey, K. J. Stevenson, J. T. Hupp. Adv. Mater. 12, 1930, (2000).
- D. Buttard, F. Oelher, T. David. Nanoscale Res. Lett. 6, 580, (2011).
- X. Lu, H. Tuan, B. A. Korgel, Y. Xia. 14, 1584, (2008).
- J. Turkevich. Gold Bull. 18, 86, (1985).
- J. Turkevich, P. C. Stevenson, J. Hillier. J. Discuss. Faraday Soc. 11, 55, (1951).
- G. Frens, Nat. Phys. Sci. 241, 20, (1973).
- D. A. Skoog, D. M. West. Fundamentals of analytical chemistry. 1963 Holt, Rinehart and Winston, Inc., USA.
- F. Paneth. Phys Z, 15, 924, (1914).
- K. Fajans, K. von Beckerath. Z. Phys. Chem. 97, 478, (1921).
- Z. Adamczyk. Adv. Colloid Interface Sci. 100/102, 267, (2003).
- E. J. W. Vervey, J. T. G. Overbeek. Theory of the stability of lyophobic colloids. 1948, Elsevier, Amsterdam, New York, republished by Dover Publ. Inc., Mineola, 1999.
- G. Sonavane, K. Tomoda, K. Makino. Colloids and Surfaces B: Biointer¬faces. 66, 274, (2008).
- D. Kumar, B. J. Meenan, I. Mutreja, Raechelle D’Sa, D. Dixon. Int. J. Nanosci. 11, 1250023, (2012).
- S. Honary, P. Ebrahimi, M. Ghasemitabar. Trop. J. Pharm. Res. 12, 295, (2013).
- W. Haiss, N. T.K. Thanh, J. Aveyard. Anal. Chem. 79, 4215, (2007).
- U. Pahk, S. Chongsawangvirod, E. A. Irene. J. Electrochem. Soc. 138, 308, (1991).
- H. M. Branz, V. E. Yost, S. Ward, K. M. Jones. Appl. Phys. Lett. 94, 231121, (2009).
- G. Chang, H. Shu, Kai Ji, M. Oyama, X. Liu, Y. He. Appl. Surf. Sci. 288, 524, (2014).
- D. The Nguyen, D. Kim, M. Gi So b, Kyo-Seon Kim Adv. Powder Tech. 21, 111, (2010).
- W. Patungwasa, J. H. Hodak, Mat. Chem. Phys. 108, 45, (2008).
- D. Philip, Spectrochim. Acta A. 71, 80, (2008).
- Z. Liu, Y. Zu, S. Guo, Appl. Surf. Sci. 255, 5827, (2009).