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ABSTRACT
 
In this work quantitative structure-activity relationship (QSAR) study has been done on 1,2-ethylenediamine derivatives as anti-tuberculosis drugs. Genetic 

algorithm (GA), artificial neural network (ANN), multiple linear regressions (stepwise-MLR) and Imperialist Competitive Algorithm (ICA), were used to create 
the nonlinear and linear QSAR models. The root-mean square errors of the training set and the test set for GA–ANN models using the jack-knife method, were 
0.1402, 0.1304 and Q2 = 0.94. Also, the R and R2 values 0.85, 0.73 in the gas phase were obtained from a GA-stepwise-MLR model. Q2 of training set for PLS was 
0.52. The results obtained from this work indicate that ANN and ICA models are more effective than other statistical methods and exhibit reasonable prediction 
capabilities. The best descriptors are G3u, HATS2e, F02(C-N), GGI10, RDF040m, Mor22p, Mor05p, TIC4, H4e, H-052, G2m and G1e.
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INTRODUCTION 

Tuberculosis in humans is mainly caused by Mycobacterium tuberculosis1. 
The infection is transmitted by respirable droplets generated during forceful 
expiratory activity such as coughing.

Tuberculosis infection can be either active or latent. The World Health 
Organization (WHO) estimates that within the next 20 years about 30 million 
people will be infected with the bacillus. The clinical management of TB 
has relied heavily on a limited number of drugs such asisonicotinic acid, 
hydrazide, rifampicin, ethambutal, streptomycin, ethionamide, pyrazinamide, 
fluroquinolones etc3-4.

In imperialistic competition algorithm(ICA), all the empires try to take 
possession of colonies of other empires and control them. This competition 
gradually brings about a decrease in the power of weaker empires and an 
increase in the power of more powerful ones. This competition is modelled by 
just picking some (usually one) of the weakest colonies of the weakest empires 
and making a competition among all empires to possess the colony, or colonies 
5-7.

The search for quantitative relations between chemical structure and 
biological activity is the subject of quantitative structure-activity relationships, 
the purpose of which is to explain why a given drug produces its particular 
effect, and ultimately to predict the effect of newly synthesized chemical 
compounds.

One of the important features of mathematical model is its ability to predict 
the activity of molecules not yet synthesized or those with limited in vivo and in 
vitro experimental information, for economic or ethical reasons. 

Partial least squares (PLS), is highly sensitive to extreme values of 
variables, which do not contribute to a predictive model8. The situation 
becomes worse when more variables are introduced to the models. Thus, the 
larger the number of variables, the less the predicted value of the developed 
model9. Therefore, a variable selection step is necessary prior to building PLS 
models. To solve this problem, GA and PLS have been combined in a variable 
selection of QSAR and QSPR modelling. Genetic algorithms are best known 
for their ability to efficiently search large spaces and have been widely applied 
in different fields10-11. Thus, GA can be used for improving the prediction of 
QSAR modelling.

The more commonly used techniques in construction of QSAR models are 
PLS, principle component regression (PCR) and ANN12-14. PLS is insensitive 
to co-linearity among the predictor variables and allows one to handle data 
sets where the number of variables is larger than the number of observations. 
Thus, for large data sets PLS is preferable. In addition, PLS analysis provides 
equations describing the relationship between one or more dependent variables 
and a group of explanatory variables.

The RMSE can be calculated for prediction or validation samples 
(RMSEP) and for calibration samples (RMSEC). RMSEC (all validation 
methods) is calculated as:

RMSEC =                                                                                    (1)

Res Ycal Var is Residual calibration variance

DATA SET 
The data set consists of the experimental bioavailabilities of 21 

structurally-diverse chemicals as reported by Protopopova15. Twenty-seven 
compounds with MICs of 15.6 mM were tested on Vero cells to determine in 
vitro cytotoxicity (IC50) and to establish a selectivity index (SI). Five of the 
most potent compounds were tested for in vivo efficacy in a murine model of 
chronic tuberculosis infection.

MATERIALS AND METHOD 

Actual half-maximal inhibitory concentration (IC50) values of all 
compounds were selected from literature. This set contained the effective 
concentration activities of 21diketo analogues. A set of seven compounds was 
randomly removed from the dataset to be used as the prediction set (PSET). The 
log (1/IC50) of this set spanned the entire dataset. The remaining  compounds 
were utilized as the training set (TSET). In the simplest form of bootstrapping, 
instead of repeatedly analyzing subsets of the data, sub samples of the data are 
repeatedly analyzed. Each sub sample is a random sample with replacement 
from the full sample.

The structure and biological data of 21 molecules were obtained from 
literature15. The 3D structures of the molecules were generated using the built 
optimum option of Chemoffice. The structures were then fully optimized based 
on the ab initio method using the DFT level of theory (Figure 1). Dragon (version 
5.5) was employed to calculate the molecular descriptors. All calculations were 
performed using the Gaussian 09W program series. Geometric optimization 
of compounds was carried out using the B3LYP method employing a 6–31G 
(2d) basis set. 

The independent variables were molecular descriptors and the dependent 
variables were the actual half-maximal inhibitory concentration (IC50) 
values. More than 3226 theoretical descriptors were selected and calculated. 
Unscrambler (version 9.7) was used for analysis of data and statistical methods. 
For each compound in the training sets, a correlation equation was derived 
using the same descriptors. The equation was then used to predict log (1/IC50) 
values for the compounds from the corresponding test sets. 

Stepwise MLR, GA, ANN and ICA were used to select the most appropriate 
descriptor from all descriptors. 

A genetic algorithm (Figure 2, Table3), ICA (Figure 2,3), ANN, MLR 
(Table 2), PLS (Table 1), Principal component regression(Table1) and least 
absolute shrinkage and selection operator (Table 2) were used to create the 
QSAR models. 

First,  descriptors  that  had   the  same  values   for  at   least  75%  of  
compounds  within  correlation  coefficients  less  than  0.4 with the dependent 
variable were regarded redundant and removed. Finally, since highly correlated 
descriptors provide approximately identical information, a pairwise correlation 
was performed. When their correlations coefficient exceeded 0.95, one of two 
descriptors was randomly removed. These descriptors would be used as inputs 
of the ANN. GA was utilized as the mean for non-linear feature selection.
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Fig. 1 The  molecular structure  of   ethylenediamine analogues.

Fig. 2. The  results  of   GA and ICA.
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Fig. 3. Plot of output versus target data using ICA method. 

RESULTS AND DISCUSSION 

In this work, QSAR between oral bioavailabilities of some drugs and 
their molecular structural descriptors were investigated by using linear and 
nonlinear techniques. After calculations of descriptors,the different methods 
were performed on the remaining descriptors to select the most important of 
them. 

Statistical parameters of the different QSAR models are shown in Table 2. 
It can be seen that the RMSE values for the ANN and ICA method are better 
than those for the other methods. The descriptors selected using the methods 
described above were used to construct linear and nonlinear models using GA, 
ICA, ANN, MLR, PLS and PCR. 

The efficiency of the QSAR model for predicting log (IC50) was estimated 
using the internal cross-validation method which resulted a prediction for log 
(1/IC50) using MLR, PLS and PCR (Table 1). Considering experimental error, 
the overall prediction for log (1/IC50) was satisfactory. 

Table1 shows the linear variable selection methodsused to select the most 
significant descriptors.The most significant descriptors selected are G3u, 
HATS2e, F02(C-N), GGI10, RDF040m, Mor22p, Mor05p, TIC4, H4e, H-052, 
G2m and G1e (Table 4).  

Atomic masses, symmetry directional WHIM index, electronegativities, 
frequency of C-N at topological distance, radial distribution function, atomic 
van der Waals volumes, atomic polarizabilities and symmetry were important 
descriptors in this study. 

Atom polarizabilities are linearly correlated with their hardness. The 
atomic properties considered are partial charges, electron densities and 
polarizabilities, calculated by computational chemistrymethods; moreover, 
bond properties have been proposed as the difference between the property 
values of the atoms forming the bond. GGk is The topological charge index .

The radial distribution function (RDF) descriptors are based on the distance 
distribution in the molecule. The radial distribution function of an ensemble of 
n atoms can be interpreted as the probability distribution of finding an atom in 
a spherical volume of radius R. 

3D MoRSE descriptors (3D Molecule Representation of Structures based 
on Electron diffraction) are derived from Infrared spectra simulation using a 
generalized scattering function.  

WHIM descriptors are based on the statistical indices calculated on the 
projections of atoms along principal axes .They are built in such a way as to 
capture relevant molecular 3D information regarding the molecular size, shape, 
symmetry and atom distribution with respect to invariant reference frames. 
The algorithm consists of performing a Principal Components Analysis on the 
centered Cartesian coordinates of a molecule by using a weighted covariance 
matrix obtained from different weighing schemes for the atoms. 

HATS descriptors are computed on a Hydrogen-filled molecule. We 

construct the Molecular Influence matrix H as follows. Let M be the geometric 
distance matrix having n rows and 3 columns, where we have one row for each 
of the n atoms present in the molecule and one column for each of the x-, y-, z- 
coordinates of the atoms in the molecule. The atomic coordinates are assumed 
to be calculated with respect to the geometric center of the molecule. 

Bond character is closely related to the capacity of bonded atoms to 
exchange electrons, and such capacity is commonly well represented by the 
electronegativity x of the bonded atoms. 

The molecular weight can be viewed as a simple linear atom contribution 
model, where the group contributions are atomic masses. In the first case, large 
training sets are used to obtain reliable estimates of the group contributions. 
Usually a battery of group contributions (a field of scalar parameters) is 
defined taking into account several structural characteristics of the molecules, 
also sometimes adding extra terms (correction factors) referring to special 
substructures. 

R2 = 0.73 for the stepwise-MLR model. The result of the ICA was Output 
= 0.28 Target + 1.1 with a training R equal to 0.74(Figure3). 

For MLR, we found that: Out = 0.841-4.807 G3u -8.655 G1e 
For MLR-ICA, we had: Out: = 0.386+0.39Le3-0.496 Mor32m 
For MLR-GA, we found that: Out= -1.115-10.104G1e+7.301G2v 

As can be seen in this table, there is correlation between selected molecular 
descriptors [Table5]. We have correlation: 

HATS2e with Mor05p 
Mor32m with Mor05p 
G1e with Mor32m 
F02(C-N) with H052 
RDF040m with TIC4 
F02(C-N) with Mor05p 

In studies with different methods and different goals, compounds 1, 4, 11, 
15 and 17 among 21 studied compounds have the lowest deviation and are 
suggested as the best compounds to make anti-TB drugs. 

Table 1.Experimental and predicted values of log (1/IC50) using Jack –
Knife,  PLS  PCR model.

Calculated
GA-PLS

Calculated
GA-PCR

Calculated
(Jack-knife)

Observed
Log(1/IC50)

Sample

-1.570-1.592-1.3947-1.4100   1

-1.316-1.349-1.5221-1.1100   2

-1.419-1.412-1.4271-1.4700   3

-1.347-1.392-1.4162-1.5000   4

-1.507-1.512-1.4322-1.5300   5

-1.353-1.372-1.3818-1.5000   6

-1.333-1.312-1.4358-1.5100   7

-1.277-1.276-1.4375-1.3900   8

-1.497-1.473-1.4458-1.2700   9

-1.462-1.458-1.4400-1.3900   10

-1.540-1.540-1.4475-1.4300   11

-1.550-1.541-1.4657-1.3400   12

-1.710-1.680-1.5433-1.9000   13

-1.524-1.512-1.3898-1.6900   14

-1.484-1.480-1.4657-1.4400   15

-1.572-1.569-1.5183-1.9000   16

-1.637-1.615-1.4101-1.6500   17

-1.610-1.599-1.4023-1.7000   18

-1.479-1.527-1.4303-1.3200   19

-1.416-1.403-1.4413-1.3400   20

-1.505-1.495-1.4308-1.3200   21
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Table 2. The statistical parameters of different constructed QSAR models.

Methods RMSE 1 RMSE 2 R2 P value Fratio Standard error of 
predicted value Q2 R2pre

Jack-knife 0.1267 0.1395 - - - - 0.94

ICA - 0.1728 - - - -

LASSO - - 0.93 - - 0.027

GA-MLR - - 0.73 - - -

GA-PLS 0.0018 0.0235 0.81 - - - 0.52 0.68

GA 0.1350 0.1748 - - - -

RS - - - 0.04 1.7 -

Table 3. Descriptors values for GA.

F02[C-N]G1eG2mH-052H4eMor22pTIC4   Molecule

5
4
5
4
5
4
5
5
5
5
5
5
6
5
5
5
6
6
5
5
5

0.151
0.154
0.149
0.142
0.159
0.139
0.144
0.146
0.154
0.163
0.153
0.160
0.169
0.167
0.159
0.163
0.159
0.166
0.143
0.155
0.146

0.165
0.186
0.155
0.156
0.152
0.152
0.147
0.152
0.154
0.181
0.190
0.160
0.154
0.178
0.177
0.147
0.174
0.148
0.150
0.167
0.177

2
2
4
1
4
2
5
4
4
4
5
5
6
5
5
4
6
4
0
5
5

2.800
2.753
2.907
2.671
3.289
3.118
3.198
2.903
3.247
3.114
2.411
2.920
2.613
2.506
2.819
2.387
2.444
2.494
2.181
3.316
2.383

0.435
0.229
-0.185
0.662
0.471
-0.009
0.045
-0.101
0.106
0.226
-0.057
0.141
0.557
0.143
-0.028
0.434
0.291
0.218
-0.070
0.288
-0.020

294.896
311.908
332.163
291.415
268.226
360.725
384.897
363.970
358.928
312.226
272.904
287.394
252.253
298.149
284.265
270.457
281.455
303.510
311.735
302.654
300.743

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Table 4. The mean of selected  Descriptors. 

Descriptor Symbol Descriptor group Meaning Method

MATS6m 2D autocorrelations Morgan autocorrelation-lag6/weighted by atomic masses LASSO

G3u WHIM 3st component symmetry directional WHIM index LASSO

HATS2e GETAWAY Leverage-weighted autocorrelation of lag 2/weighted by atomic Sanderson 
electronegativities LASSO

F02(C-N) 2D frequency finger prints frequency of C-N at topological distance 02 LASSO

GGI10 Topological Topological charge index of order 10 ICA

RDF040m RDF Radial Distribution function -4/Weighted by atomic masses ICA

Mor22p 3D-MoRSE 3D-MoRSE-signal22/ Weighted by atomic masses ICA,GA-ANN

Mor05p 3D-MoRSE 3D-MoRSE-signal05/ Weighted by atomic polarisabilities ICA

TIC4   Information indices(2D) Total information content index (neighborhood symmetry of 4-order ) GA-ANN

H4e GETAWAY H autocorrelation of lag 4 / weighted by atomic Sanderson electronegativities GA-ANN

H-052 Atom-centered fragments (1D) H attached to C0(sp3) with 1X attached to next C GA-ANN

G2m WHIM 2st component symmetry directional WHIM index / weighted by atomic masses GA-ANN

G1e WHIM 1st component symmetry directional WHIM index/weighted by atomic 
Sanderson electronegativities GA-MLR

 G2v WHIM  2st component symmetry directional WHIM index/weighted by atomic van der 
waals valumes GA-MLR

G3u WHIM 3st component symmetry directional WHIM index/Unweighted MLR

Le3 WHIM 3rd component symmetry size directional WHIM index/ weighted by atomic 
Sanderson electronegativities MLR-ICA

Mor32m 3D-MoRSE 3D-MoRSE signal 32/ weighted by atomic masses MLR-ICA
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Table 5. Correlation matrix between selected descriptors.

TIC
4

MATS
6m

GG
I10

RDF
040m

Mor
32m

Mor
05p

Mor
22p

G
3u

G
2m

G
2v

Le
3 G1e H

4e
HATS

2e
H0
52

F02
(C_N)

TIC4 1

MATS6m 0.19 1

GGI10 0.33 0.07 1

RDF040m 0.65 -0.01 0.30 1

Mor32m -0.47 -0. 9 -0.2 -0.37 1

Mor05p -0.65 -0.22 -0.37 -0.65 0.56 1

Mor22p -0.53 -0.35 -0.26 -0.11 0.25 0.09 1

G3u -0.25 -0.19 -0.49 -0.33 0.20 0.21 0.45 1

G2m -0.32 0.18 0.10 -0.08 0.09 0.16 -0.11 -0.31 1

G2v 0.01 0.05 0.25 0.14 -0.18 -0.05 -0.4 -0.37 0.63 1

Le3 0.21 0.08 0.06 0.06 -0.67 -0.13 -0.29 -0.04 0.03 0.1 1

G1e -0.52 -0.25 -0.07 -0.51 0.67 0.59 0.36 0.25 0.24 0.07 -0.48 1

H4e 0.35 -0.08 0.20 0.32 0.06 -0.37 0.06 0.1 -0.06 0.06 0.23 0.04 1

HATS2e  -0.83  -0.42 -0.37 -0.57 0.25 0.69 0.50 0.28 0.24 -0.18 -0.11 0.5 -0.3 1

H052 -0.38 0.06 -0.06 -0.29 0.15 0.49 0.03 -0.10 0.29 0.27 -0.09 0.44 -0.17 0.37 1

F02(C_N) -0.37 -0.11 -0.21 -0.27 0.61 0.63 0.12 0.13 -0.02 0.12 -0.43 0.61 -0.16 0.19 0.61 1

CONCLUSION 

In the present study, MLR, PLS ,GA, ANN, ICA and ANN were used 
as linear and nonlinear models to their calculated molecular descriptors. The 
calculated statistical parameters of these models revealed that ANN was better 
than others which means that there are some linear and nonlinear relations 
between selected molecular descriptors and their structures. ANN and ICA were 
successfully used to develop a QSAR model for ethylene diamine derivatives 
that provided the best results in comparison with other methods. This attempt 
to correlate log (1/IC50) with theoretically calculated molecular descriptors led 
to a relatively successful QSAR model that relates these derivatives. 

CONFILICT OF INTEREST: The authors have no conflict of interest. 

REFERENCES

[1] F. J. DuMelle, P. C. Hopewell, TB Notes News let. 1 , 23–27. (2000) 
[2] J. B . Jr.Bass , L. S . Farer , P. C. Hopewell , Am. J. Respir. Crit Care Med 

. 149, 1359–1374.  (1994) 
[3] C. R. Jr.Horsburgh , S. Feldman,  R. Ridzon, Clin. Infect Dis . 31, 633–

639. (2000 ) 
[4] P. A. Gross,  T. L. Barrett , E. P. Dellinger, P. J. Krause , W. J. Martone,  

J. E. Jr. McGowan , R. L. Sweet, R. P. Wenzel, Clin. Infect Dis . 18, 421. 
(1994 ) 

[5] R. Hosseini, H. Salehipoor, Int. J. Struct. Stab.  Dy . 12, No. 3,  1250019 
. (2012 ) 

[6]  E. Atashpaz-Gargari , C. Lucas. Imperialist competitive algorithm: 
an  algorithm for optimization inspired by imperialistic competition.  
Evolutionary Computation, CEC 2007. IEEE Congress on , 2007; pp. 
4661-4667.

[7] E. Atashpaz-Gargari , C. Lucas. Designing an optimal PID controller  
using Colonial Competitive Algorithm. First Iranian Joint Congress on  
Intelligent and Fuzzy Systems, 2007. 

[8] C. Sarbu , C. Onisor,  M. Poša, Talanta .75,  651–657. (2008 ) 
[9] M. P. Freitas,  J. A. Martins , Talanta. 67,  182–186. (2005 ) 
[10] K. Valko,  J. Chromatog. A. 1037, 299–310. (2004 ) 
[11] K. Tang, T. Li,  Anal. Chem. Acta. 476 , 75–92. (2003) 
[12] H. Gonzalez-Diaz, I. Bonet, C. E. Teran,  Eur. J. Med.Chem. 42, 580–

585. (2007) 
[13] S. Vilar, L. Santana , E. Uriarte,  J. Med. Chem. 49, 1118–1124. (2006) 
[14] C. Tang, P. A. Almeida  Fishwick Times series forecasting using neural 

networks vs. Box–Jenkins methodologySimulations, Simulations 
Councils, 1991; pp. 303–310.

[15] Marina. Protopopova, Colleen. Hanrahan, Boris Nikonenko,  J. 
Antimicrob. Chemother . 56,  968–974. (2005) 

[16] R. Todeschini,  V. Consonni , Handbook of Molecular Descriptors; 
WILEY-VCH,  Verlag GmbH. Vol. 11 , 2000; p 516.


