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ABSTRACT

UV inactivity and fluorescence irradiance of various organic substances are the major drawbacks for a wide applicability of UV based TOC assessment 
models, especially in drinking water utilities and environmental fields. The adoption of an intelligent model is the key factor to access a reliable and effective 
detection. The accurate training of the artificial neural network model and backward elimination of less significant parameters, conferred more predictive properties 
to TOC detection. This led to an efficient optimal TOC detection model based on turbidity, UV254 absorbance and true color. The validation of model performance 
was investigated through application of untrained scenarios. The outcome of the validation analysis showed a correlation coefficient of 0.87 and root mean square 
error of 0.48 while the training performance of the model showed 0.95 and 0.33 respectively. The results indicated that the trained ANN model was efficiently 
capable for TOC detection in water resources based on the main drivers.
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1. INTRODUCTION

Surface water quality largely depends on the extent of industrial and 
agricultural activities as well as natural land uses in the area. The river systems 
are most adversely affected due to their dynamic nature and accessibility to 
waste disposal through drains and tributaries. In the last few decades increased 
anthropogenic effluents into the rivers and reduced water flow have caused 
many-fold increase in the organic pollution load of the surface water bodies [1]. 

In general, the organic pollution of an aquatic system is measured and 
expressed in terms of the Total Organic Carbon (TOC). The TOC measures an 
approximate amount of natural and anthropogenic organic matter in water body 
and serves as an indicator parameter for the extent of water pollution. Detection 
and monitoring of TOC as the main source of disinfection by-products (DBPs) 
is critical for the environmental regulators and drinking water suppliers as well 
as water resources protection plan managers [2].

TOC is highly related to the dissolved organic matter (DOM) in water, and 
the high values of the earlier indicate for a high level of the dissolved organic 
carbon (DOC). However, it is common to see the terms TOC and DOC used 
interchangeably [3]. 

Currently available methods for the determination of TOC concentration 
are tedious or prone to the measurement errors [4]. Laboratory techniques for 
TOC detection include two major classes: (1) Standard analytical methods 
that are critically time consuming, user experience dependent and evidently 
vulnerable to the interferences of other existing chemicals especially chloride 
ion; (2) Instrumental TOC analyzing methods which are costly and rather 
difficult to maintain and use. In a typical TOC analyzer, sample undergoes 
an inorganic carbon removal process, combustion process and subsequent 
CO2 detection. These processes need to be taken out with care, for instance, 
inorganic carbon removal step is not entirely selective as it also affects the 
carbon in the remaining phase, possibly because of the presence of volatile 
organic substances in sample [5]. 

Online monitoring and field techniques for TOC detection are usually 
based on simple UV-TOC regression models. Although, detection of TOC 
surrogates such as UV254 is relatively fast and simple to maintain but suffers 
from inaccuracy issues that stem from nonlinear nature of UV-TOC correlation. 

The present work tried to address the mentioned drawbacks by modification 
of an artificial neural network model for TOC assessment and demonstrate 
its application on limited water quality data to show how it can improve the 
interpretation of the results. The ANN model approach has several advantages 
over traditional semi-empirical models, since they require known input 
data set without any assumptions [6]. Moreover, the application of artificial 
neural network to spectrophotometric determination of challenging chemical 
substances is known to be very efficient [7]. The ANN model develops a 
mapping of the input and output variables, which can subsequently be used 
to predict as a function of suitable inputs making it very popular in handling 

various water quality problems [8-17].
The real-life environmental problems are very complex and highly 

dependent on several process configurations, different influent characteristics 
and various other conditions [18]. Successful application of ANN based 
models for environmental problems in past decades stands for its reliability, 
robustness and adjustability [16-18]. These properties stem from the ability of 
learning complex nonlinear relationships within multiple variables particularly 
in situations where the explicit form of the relations is unknown [19]. 

TOC surrogates nonlinear modeling shows more adoptability to extensive 
variations of organic carbon concentration in comparison to less reliable UV-
TOC regression models. For the first time, artificial neural network modeling 
was chosen as a TOC assessment optimization tool in water resources. In this 
case, the possibility of a neural net model training has been investigated to 
predict TOC as the secondary attribute of primary water quality variables. The 
results should serve as a more reliable TOC detection and monitoring method 
for its better accuracy, low cost, and instantaneous nature.

2. Materials and Methods
2.1. Artificial Neural Network Modeling
ANN model is basically comprised of three distinctive layers; the input 

layer - where the data are introduced and the weighted sum of the input is 
computed; the hidden layer(s) - where the data are processed; and the output 
layer - where the results are produced. Each layer consists of one or more basic 
element(s) called a node. A node is a non-linear function, parameterized with 
boundary values [20]. The signal passing through the node is modified by 
weights and transfer functions. This process is repeated until the output layer 
is reached [21]. The number of the nodes in the input, hidden and output layers 
is application dependent and should be taken large enough to provide sufficient 
degree of freedom [22].

There are many types of neural network based on the architecture and 
training algorithm used. In current study, a three-layer feed-forward neural 
network with error back propagation learning was applied to predict the TOC 
on the bases of several input variables (Fig. 1). 

The feed-forward neural network architecture is proved to be very 
responsive for the prediction of water resources variables [23,24]. The error 
back propagation training was provided by Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) training algorithm which is well suited for the unconstrained nonlinear 
multi-dimensional problems [25]. This algorithm provided a fast and efficient 
back propagation neural network training by adaptively modifying the initial 
search direction to improve the training efficiency [26]. 

2.2. Data
The sampling station for water quality data is located near Muncie at the 

White River upstream, starting south of Winchester in Randolph County at 40° 
04’ 46” N, 84° 55’ 58” W. The river which was called Wapahani by the local 
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Indians, is currently the main water resource of several communities located 
along the 502 km of the river path [27]. The average annual river flow was 5.7 
m3s-1 and average annual precipitation was approximately 890 mm [28,29]. 

Fig. 2: Water sampling station was located at the White River upstream, 
Muncie, IN.

3. RESULTS AND DISCUSSION

3.1. Model Optimization
Model optimization is an important part of the cost effective modeling. 

This was performed to provide the best predictive model with the least number 
of input parameters. Prediction accuracy of an ANN model is highly dependent 
to the training algorithm as well as the number of nodes per layer and the 
corresponding transfer functions [32-34]. Most of these factors were chosen 
through multiple examination of model to provide a best fit model for the data 
sets. Further optimization was performed through backward elimination of less 
significant variables. 

Backward elimination method was conducted for decreasing the number 
of input variables while keeping the best probable coefficient of determination 
(R2) for the TOC prediction. However, there were no predefined criteria for 
identification of the significance of parameters. Therefore, the method was 
executed repeatedly with an omitted variable each time and comparing the 
model performance coefficients. This led to a minimum of three optically 
measurable input variables. Modified parameters of the full and optimal ANN 
model are summarized in Table 2.

Fig. 1: Feed-forward artificial neural network with error back propagation 
learning.

A total of 657 daily data from August 1998 to June 2000 including 
rainfall, water temperature, river flow, turbidity, true color, UV254 and TOC 
concentration were studied as the input parameters for training and validation 
phases. Hydrological parameters such as rainfall, temperature and river flow 
are known to affect the water TOC content which in turn affects the gratitude 
of other studied parameters [30,31].

River water sample was filtered through preheated glass fiber filters 
(Whatman GF/F) for the removal of large particles before any analytical 
measurement. TOC concentrations was measured in triplicate, using a Sievers 
800 TOC analyzer with an inorganic carbon removal module (Ionics-Sievers 
Instruments, Inc., Boulder, CO). UV absorbance at 254nm and true color at 
455nm were determined with a DR/4000 spectrophotometer (Hach Company, 
Loveland, CO), and turbidity (NTU) was measured with a SS6/SE turbidimeter 
(Hach Company, Loveland, CO). Water temperature was measured daily 
with a calibrated thermometer and daily precipitation was measured with a 
calibrated rain collector. River discharge was recorded continuously at the U.S. 
Geological Survey gauging station 03347000 on the White River at Muncie 
[28].

The data set was divided into two parts for model training and validation 
phases in the order of 6:1. Therefore 563 samples were selected for the training 
phase and 94 samples for the validation phase. The summary of the collected 
data is shown in Table 1.
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                 Table 1 Summary of data used for model training and validation phases.

Parameters Rainfall
(mm)

Water temperature
(°C)

River flow
(m3s-1)

Turbidity
(NTU)

True color
(Pt-Co)

UV254
(abs.)

TOC
(mg l-1)

Tr
ai

ni
ng

 Mean value 2.3 13.25 7.5 15.53 11.74 0.11 3.90

Max. value 53.3 26.48 237.8 277.96 50.78 0.73 11.31

Min. value 0.00 2.63 0.5 1.75 2.61 0.04 2.13

RSD % 254.7 50.9 2.2 151.3 53.7 66.1 27.4

Va
lid

at
io

n 

Mean value 1.00 13.36 7.5 15.92 11.26 0.11 3.86

Max. value 15.34 25.44 167.5 105.29 32.61 0.52 7.57

Min. value 0.00 2.74 0.5 1.75 3.47 0.04 2.18

RSD % 247.38 51.02 2.1 131.43 50.99 71.86 25.25

                          Table 2 Summary of optimum ANN model parameters.

Parameter Full model values Optimal model values

Input variables Water Temperature, River Flow, 
Rainfall, UV254, Color, Turbidity UV254, Color, Turbidity

Number of training Iterations 50000 100000

Number of input nodes 7 4

Number of hidden nodes 15 10

Number of output nodes 1 1

Learning rate 0.3 0.5

Activation steepness 1 1

Hidden Layer Activation function Elliot Elliot

Output Layer Activation function Sigmoid, Stepwise Elliot Symmetric

This process minimized the model to 3 input variables while keeping the 
coefficient of determination as high as possible. The prediction capability of 
the optimized model is shown in Figure 3 as how it competes with the full 
model in a 1:1 diagram.

3.2. Model Performance
Model performance and prediction accuracy was investigated as the 

various correlation limiting factors. Statistical analysis was performed on 
both preliminary full model and the reduced size model. The correlation 
coefficients of predictions and relevant errors were repeatedly calculated 
during each training and validation phases to get the most accurate probable 
prediction. Though, the best results of the modeling performance indicators are 
summarized in Table 3.

According to Table 3 there is a quite competing results for the optimized 
model with only 3 input factors in comparison with the full model in training 
phase which was remarked by comparable R and Rs values. Relatively high 
values of the coefficient of determination (R2) indicated reliable predictive 
characteristics which provide enough evidence for the significance of the input 
parameters for TOC assessment. 

Table 3: Summary of ANN model performance in training and validation 
phases.

Model performance coefficients TOC (Full 
model)

TOC 
(Optimal 
model)

Tr
ai

ni
ng

Pearson Correlation coefficient (R) 0.97 0.95

Coefficient of determination (R2) 0.95 0.91

Spearman correlation coefficient (Rs) 0.95 0.92

Mean Absolute Percentage Error (MAPE) % 5.04 6.23

Root Mean Square Error (RMSE) 0.25 0.33

Va
lid

at
io

n

Pearson Correlation coefficient (R) 0.87 0.87

Coefficient of determination (R2) 0.75 0.75

Spearman correlation coefficient (Rs) 0.90 0.92

Mean Absolute Percentage Error (MAPE) % 7.21 7.29

Root Mean Square Error (RMSE) 0.50 0.48

Fig. 3: Performance of optimized model in 1:1 diagram.
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The validation results showed some expected loss of accuracy. Knowing 
the fact that validation scenarios were completely new for the model to predict 
on the basis of training information, the predicted results are in a very good 
agreement with the actual observations. It is noteworthy that the optimized 
model actually did a better job in validation phase with the higher spearman 
coefficient (0.92 vs 0.9) and lower RMSE (0.48 vs 0.50). The performance 

Fig. 4: Predicted vs. observed TOC concentrations in ANN 
model’s validation phase.

of both models in the validation phase was shown in Figure 4 as the model 
prediction versus the actual observation in a 1:1 diagram.

Although the higher predictive capabilities of the ANN model usually 
stand for its higher accuracy, these capabilities seem to be a result of the model 
adjustability in the application of two more surrogate parameters – Color and 
Turbidity – in addition of UV254 in the prediction model. 

Long term prediction of ANN model and the relevant prediction error is 
presented in Fig. 5. The performance of the ANN model for predicting TOC 
variations was reasonable. However, the model showed some difficulties 

in predicting peak values which is shown in peak values of TOC. This is 
apparently because the ANN model were trained with 563 days of data which 
include only 10 days with TOC concentration over 7 mg l-1. 

Fig. 5: Predicted vs. observed TOC concentrations during the studied time scale.
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A descriptive comparison of the specified method in the present work with common TOC determination methods is shown in table 4. A detailed information 
on the applicability and characteristics of compared methods is well describe by Matilainen and Bisutti [5,35].

Table 4: Comparison of common TOC detection methods with the proposed method+

Detection 
Method Sample Treatment Intended 

Use
TOC

 Modeling

M
on

ito
ri

ng
 

C
om

pa
tib

ili
ty

C
os

t
E

ffi
ci

en
cy

Ti
m

e
E

ffi
ci

en
cy

E
nv

ir
on

m
en

t 
F

ri
en

dl
y

U
se

r
F

ri
en

dl
y

R
el

ia
bi

lit
y

A
cc

ur
ac

y

Titration of Excess Cr2O7
2- Wet Oxidization by 

Cr2O7
2- Laboratory Linear Regression L H L L L H H

Colorimetric Detection
 of Excess Cr2O7

2-
Wet Oxidization by 

Cr2O7
2- Laboratory Linear Regression L M L L L H H

IR Detection
 of CO2

Wet Oxidization by 
Persulfate Laboratory Linear Regression L L M M L L H

Thermal Conductivity 
Detection of CO2

Wet Oxidization by 
Persulfate Laboratory Linear Regression L L M M L L H

Detection of Fluorescence 
Irradiance

No Particular 
treatment Laboratory Linear Regression M M M H M M L

Detection of 
UV254 Absorbance

No Particular 
treatment

Field & 
Laboratory Linear Regression H H H H H M L

This work; Detection of 
UV254, Color, Turbidity 

No Particular 
treatment

Field &
Laboratory ANN (Nonlinear) H H H H H H M

                      + L: Low, H: High, M: Moderate

4. CONCLUSIONS

An intelligent TOC detection model for water resource monitoring 
was developed using artificial neural networks. The results indicated that 
the modified model converged rapidly during the training phase and the 
performance of the ANN model in variations of TOC was reasonable. The 
predicted TOC concentrations is in good agreement with the observed values 
with the correlation coefficient of 0.87 and root mean square error of 0.48. 
According to the results, the ANN model reasonably balanced the cost and the 
accuracy of TOC detection through measurement of three optically measurable 
surrogate parameters – UV254, Color and Turbidity.  As a matter of fact, ANN 
supported spectrophotometry showed to be a reliable alternative for TOC 
analysis. The results are critical for water monitoring systems and drinking 
water suppliers for fast, low cost, and maintenance-free TOC monitoring. 
The proposed method is a suitable support system for other TOC analytical 
methods, indicating outlier data and instrumental failure or can be further 
exploited to examine the effects of other challenging water quality parameters 
such as DBPs. 

ACKNOWLEDGEMENTS

Authors gratefully acknowledge Dr. Christian Volk for providing water 
quality data used in model training and validation. Authors also acknowledge 
many beneficial conversations with Prof. Khalil Farhadi and Mr. Bahman 
Ahmadzadeh. This project was funded by the laboratory of KIMIA AB, Urmia.

REFERENCES

1.- K.P. Singh, A. Malik, D. Mohan and S. Sinha, J. Water Res. 38(18), 
3980–3992 (2004).

2.- Y. Hou, W. Chu and M. Ma, J. Environ. Sci. 24(7), 1204–1209  
(2012).

3.- R. Beckett and J. Ranville, in Interface Science in Drinking Water 
Treatment: Theory and Applications, Edited by G. Newcombe and 
D. Dixon (Elsevier Ltd, London, 2006).

4.- G. Visco, L. Campanella and V. Nobili, Microchem. J. 79, 185–191 
(2005).

5.- Matilainen, E.T. Gjessing, T. Lahtinen, L. Hed, A. Bhatnagar and M. 
Sillanpää, Chemosphere 83, 1431–1442 (2011).

6.- M.W. Gardner and S.R. Dorling, J. Atmos. Environ. 32, 2627–2636 
(1998).

7.- M.R. Moghadam, A.M.H. Shabani and S. Dadfarnia, J. Hazard. 
Mater. 197, 176–182 (2011).

8.- I.O. Bucak and B. Karlik, Ekoloji 20(78), 75–81 (2011).
9.- P. Kulkarni and S. Chellam, J. Sci. Tot. Environ. 408(19), 4202–4210 

(2010).
10.- E. Dogan, A. Ates, E. C. Yilmaz and B. Eren, Environ. Prog. 27(4), 

439–446 (2008).
11.- E. Dogan, B. Sengorur and R. Koklu, J. Environ. Manag. 90(2), 

1229–1235 (2009).
12.- P.S. Kunwar, A. Basant, A. Malik and G. Jain, Ecol. Model. 220(6), 

888–895 (2009).
13.- P.S. Kunwar and S. Gupta, Chemomet. Intell. Lab. Sys. 114, 122–131 

(2012).
14.- Q. Cong, W. Yu and T. Chai, in Advances in Computational 

Intelligence vol.61, edited by W. Yu, E.N. Sanchez (Springer–
Verlag, Berlin, 2009).

15.- Najah, A. El-Shafie, O.A. Karim, O. Jaafar and A.H. El-Shafie, Int. J. 
Phys. Sci. 22(6), 5298–5308 (2011).

16.- A.R. Khataee, M. Zarei and M. Pourhassan, Clean 38(1), 96–103 
(2010).

17.- E.R. Rene and M.B. Saidutta, Int. J. Environ. Res. 2(2), 183–188 
(2008).

18.- K. Yetilmezsoy and S. Demirel, J. Hazard. Mater. 153, 1288–1300 
(2008).

19.- K. Yetilmezsoy, B. Ozkaya and M. Cakmakci, Neural Net. World 
11(3), 193–218 (2011).

20.- G. Dreyfus, J.M. Martinez, M. Samuelides, M. B. Gordon, F. Badran 
and S. Thiria, L. Hérault, Reseaux de Neurones - Méthodologie et 
applications, (Eyrolles, Paris, 2002).

21.- R.S. Govindaraju, J. Hydrol. Eng. 5(2), 124–137 (2000).
22.- J.M. Ortiz-Rodríguez, M.R. Martínez-Blanco, J.M. Cervantes 

Viramontes and H.R. Vega-Carrillo, in Artificial Neural Network-
Architectures and Applications, edited by K. Suzuki (InTech, Rijeka, 
2013)

23.- R.C. Schweitzer and J.B. Morris, United States Army Research 
Laboratory Report No. ARL–TR–2155, 2000.

24.- S. Palani, S. Liong, P. Tkalich and J. Mar. Pollut. Bull. 56(9), 1586–



J. Chil. Chem. Soc., 61, Nº 3 (2016)

3060

1597 (2008).
25.- J. Nocedal and S.J. Wright, Numerical Optimization, 2nd ed. 

(Springer–Verlag, New York, 2006).
26.- N.M. Nawi, M.R. Ransing and R.S. Ransing, Presented at the 

Sixth International Conference on Intelligent Systems Design and 
Applications IEEE, Jinan University, China, 2006 (unpublished).

27.- L. Sonneborn, Chronology of American Indian History (Infobase 
Publishing, New York, 2007).

28.- C. Volk, L. Wood, B. Johnson, J. Robinson, H. W. Zhuc and L. 
Kapland, J. Environ. Monit. 4, 43–47 (2002).

29.- C. Volk, L.A. Kaplan, J. Robinson, B. Johnson, L. Wood, H.W. Zhu 

and M. LeChevallier, Environ. Sci. Technol. 39(11), 4258–4264 
(2005).

30.- I. Delpla, A.V. Jung, E. Baures, M. Clement, O. Thomas, Environ. 
Inter. 35, 1225–1233 (2009).

31.- J.K. Edzwald, G.S. Kaminski, J. NEWWA, 123(1), 15–31 (2009).
32.- T.Y. Lin and C.H. Tseng, J. Eng. App. Art. Intell. 13, 3–14 (2000).
33.- J.A. Frenie, A. Jiju, Work Study 50(4), 141–149 (2001).
34.- T.T. Soong, Fundamentals of probability and statistics for engineers, 

(John Wiley & Sons Inc., New York, 2004).
35.- I. Bisutti, I. Hilke, M. Raessler, Trends Anal. Chem. 23(1), 10–11 

(2004).


