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ABSTRACT 

In recent decades the increase in the use of plastics has been exponential around the world, reaching a presence in places such as rivers, oceans and lakes, as well 

as in terrestrial environments such as agricultural soils. Associated with the great use of plastics in all areas of work, plastic particles smaller than 5 mm, called 

microplastics, have been found in all environmental matrices: aquatic environment, dispersed throughout the water column, terrestrial environment, infiltrating the 

soil sedimenting, and in the air, being transported by the wind. In each of these matrices, microplastic serves as transport for highly polluting compounds such as 

heavy metals, polycyclic aromatic hydrocarbons and organochlorine pesticides. In addition to environmental matrices, microplastics have been found in animals and 

humans in alarming numbers. In this way, this review addresses issues related to the formation and distribution of microplastics throughout the ecosystem and different 

organisms. 
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INTRODUCTION 

To understand microplastics we must first understand what a plastic is, where 

they come from, how they are formed, what they are for, etc. If we go to the 

generality, a plastic is a material of compounds that can be organic or synthetic, 

these plastic materials have the main characteristic of being malleable, which 

allows them to have an infinity of forms with ample utilities. For this reason, it 

is that plastics have a wide classification according to how they are made, 

according to the behavior against heat, by synthesis reaction, molecular structure, 

biodegradable, etc. (see Table 1). Thus, how all these plastics are made up of 

very small molecular units (monomers) they are technically known as polymers. 

Table 1. Brief classification of some types of plastics. 

Classification Types Examples Structure Ref. 

Reaction of 

synthesis 

Adition Polymers 

 

 

Condensation 

polymers 

Vinyl chloride 

 

 

Silicone 

 
 

 

[1-4] 

Behaviour to 

the heat 

Thermoplastics (TP) 

 

 

Thermostable (TS) 

Nylon 6,6 

 

 

 

Polyuretane 

 
 

 

[5-7] 

Molecular 

structure 

Amorphous 

 

 

 

 

 

Semicrystallines 

 

 

 

 

Crystallines* 

Poly(styrene) 

atactic 

 

 

 

 

Poly(ethylene) 

 

 

 

 

Polyamides* 

 
 

 
 

 

[8-13] 

 

* Although there is no 100% crystalline material, polyamides are materials that 

have a very high crystallinity. 

Since the 1950s, these materials have become very useful products in all 

known areas, from household products, agriculture, engineering, medicine, 

among many other areas. They are of great help due to their wide versatility, low 

production cost and stability, however, high production also generates a very 

high amount of waste that ends up in the environment, generating severe global 

pollution problems [14, 15], accumulating in the oceans and thereby generating 

ecological risks [16], as well as effects on human health [17]. More than 6300 

million tons of plastic waste have been reported and 79% of it is associated with 

different landfills and natural environments [18], where only 10% is recycled 

properly [19]. This is why the (mis)excessive and extensive use of plastic 

products results in small plastic particles beginning to be detected in aquatic and 

terrestrial environments, including rivers, oceans, lakes and estuaries [20-26]. In 

addition, as of 2010 more than 275 million tons of plastic have been reported in 

the oceans and emissions are estimated at 8 million tons of macroplastic and 1.5 

million tons of microplastic annually [27]. In addition to the above, there are 

projections in which it is estimated that there were 710 million tons in the ocean 

by 2040 [28] so that this large amount of plastic waste is being a very high 

contribution to the generation of both microplastic, nanoplastic and their leachate 

due to the different aging processes [29].  The different destinations of plastic on 

the surface of the sea are still a mystery due to the wide diversity in vertical and 

spatial transport mechanisms, considering also that small waste derived from 

primary and secondary sources is almost omnipresent in nature, generating 

severe impacts on nature [30], synthetic polymers found in the environment, 

drinking water, and food [31, 32]. These small plastic particles do not have a 

strict definition, however it has become widespread that 5 mm is the upper limit 

for a mycoplastic [33-36], so concerns have been increasing due to their presence 

in different environmental matrices [37] so the effects need to be addressed 

further.  However, the plastic problem is considered to be below (and very close) 

to problems such as global warming and ocean acidification [38] as the properties 

of plastics begin to change immediately through weathering processes after they 

enter the environment [39]. 

Plastic and its fragmentation: 

Although, in a year only 1% of the microplastic is the one that is floating in 

the ocean, we must understand how the transformation, fragmentation and fate 

of the rest is possible, since plastic particles have been reported in the water 

column around the world [40, 41]. Now, as we already mentioned, once plastics 

enter the environment they begin to decompose physically and chemically, 

although the degradation time will depend on factors such as the environment, 

temperature, relationship with chemical additives to the plastic, etc. For example, 

areas such as the coasts of the high Arctic have high UV temperatures and 

freezing [42], so plastics will be more fragile and more susceptible to breakage, 

while those found in the deep sea can be preserved for decades [16, 43]. Chemical 

additives serve to modify properties and meet the desired yields, however, many 

of these have sensitivity to environmental stress such as UV rays, heat, cold, 

mechanical damage, etc. In addition to being released if natural exposure is 

prolonged.  5 major additives [44] have been reported to "leak" due to exposures. 

While inorganic additives such as calcium carbonate (CaCO3), widely used, 

generate cracks due to physical effects [45].  
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These cracks lead to what is known as weathering of plastic litter in the marine 

environment. This currently meets 2 of the 3 criteria that imply being a threat to 

the planet in terms of chemical pollution and release of new entities. These 

criteria correspond to: 

1. Exposure on a planetary scale  

2. It is not easily reversible  

3. It causes disruptive impact on the vital processes of the earth system. 

At 2017, which is where weathering of plastic trash was described, it was 

unclear whether plastic waste was meeting the third criterion. However, over the 

years it has been shown that there is indeed a significant impact on Earth systems.  

It has been established that these microplastics can leach into terrestrial systems 

through landfills and various human activities due to uncontrolled discharges 

[46, 47]. 

Microplastic in the aquatic environment: 

In 2010, more than 275 million tons of plastic were recorded and 31.9 million 

of the poorly managed plastics ended up in the environment, where about 8 

million tons ended up in the ocean through rivers, surface runoff and other 

processes [27, 48], and it must be considered that about 80% of plastics present 

in the oceans originate in terrestrial environments to make their way to different 

bodies. of water [49]. Studies of concentration, abundance and distribution of 

microplastics have been reported in freshwater bodies such as lakes [50-53], 

rivers [53-55], and estuaries [56-58], and especially in the ocean [59-63], where 

synthetic textiles should be considered the most important sources of 

microplastics (see Figure 1). 

All this waste affects the marine ecosystem, where there have been more than 

100 thousand deaths of marine animals per year and more than 700 marine 

species threatened by different types of plastics. In general, we can see the 

distribution of plastic waste as regular plastics and microplastic (in addition to 

nanoplastics) according to their origin (see Figure 2). 

 

Figure 1. Important agents in terms of the generation of ocean microplastics 

 

Figure 2. Distribution of microplastics in the ocean by type. 

The problem is such that these fragments of plastics, microplastics, have been 

found in the open oceans [64] including the polar waters of the Arctic [65]. This 

great concern is due to the fact that microplastics may be agents of transport of 

chemical pollutants in the marine ecosystem due to the absorption of potentially 

hazardous substances on their surfaces [66].  For example, phenanthrene, a toxic 

substance belonging to the group of PHAs that is included in the list of priority 

toxic compounds, reaches the different bodies of water where it can be 

transported by microplastics where it will later accumulate in marine sediments 

(see Figure 3). 

 

Figure 3. Transport of toxic compounds into sediments by microplastic 

particles. 

At the same time, plastic waste found in aquatic environments carries 

chemicals of small sizes (1000 Mw) that can enter cells and interact with 

important biological molecules generating alterations in the endocrine system. 

These chemical compounds have two classifications: i. Hydrophobic chemicals 

that are absorbed from seawater given by the existing affinity of chemical 

compounds for the hydrophobic surface of plastics. ii. Additives. Monomers and 

oligomers of the molecules that make up plastics. A well-known example is the 

constitutional monomer bisphenol A (BPA) (see Figure 4.a) and alkylphenol 

additives (see Figure 4.b) that generate estrogenic effects, as well as phthalate 

plasticizers (see Figure 4.c) that have effects on testosterone production. At the 

same time, when plastic sizes are reduced, the chemical properties of plastics 

remain unchanged [67], e.g. adipato-coterephthalate polybutyrate (PBAT) (see 

Figure 4.e) and low-density polyethylene (see Figure 4.d). 

 

Figure 4. Structures of some microplastics present in the environment. a. 

Bisphenol A. b. Alkylphenol. c. Phthalates. d. Polyethylene. E. Polybutylene 

adipate terephthalate. 

It has been estimated that between 15 and 51 trillion microplastic fragments, 

equivalent to 93,000 and 236,000 tons are already found in the oceans worldwide 

[68]. The complexity of this is that, unlike larger plastics that are easier to remove 

either by natural or human-assisted processes, microplastics are more difficult to 

detect and thus be eliminated [48], which means that over time they can remain 

in sediments and enter the food chain. 

Microplastics are important carriers of compounds such as PAHs, which are 

readily adsorbed by organisms causing biotoxic effects other than when adsorbed 

alone [69, 70]. The interactions between microplastics and PAHs correspond to 

hydrogen interactions, binding of halogenated compounds and - interactions 

[71] (see Figure 5), where it has been shown that polystyrene microplastics can 

interact with different aromatic compounds through - bonds [72]. Other 

studies have reported that the amide group of a polyamide microplastic forms 

interactions by hydrogen bonds with the benzene ring [73] and at the same time, 

studies of five bisphenol compounds have been recorded in polyvinyl chloride 

microplastics where, in addition to exhibiting interactions by hydrogen bonds, 

the chloride ion in this type of microplastics can form halogenated bonds with 

the electron donor benzene ring [34] (see Figure 6). 
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Figure 5. Adsorption of contaminants by microplastics by hydrogen bonding 

interactions, halogenated bonds and interactions (Image adapted from Wu, et al., 

2019 [34]). 

 

Figure 6. Interaction by hydrogen bond and halogenated bonds of polyvinyl 

chloride with the  benzene ring bond. 

Thus, absorption and transport of antibiotics by microplastics has also been 

recorded. In this way, the microplastics of polyethylene, polystyrene, 

polypropylene, and polyamide are agents of absorption and transport of different 

antibiotics, although polyamide microplastics have the highest adsorption 

capacity for antibiotics such as sulfadiazine, amoxicillin, tetracycline, 

ciprofloxacin, and trimethoprim, due to the high presence of hydrogen bridge 

interactions [73]. 

Microplastics in the terrestrial environment: 

This section will review the aspects that generate impacts on biogeochemical 

or nutrient cycles in the terrestrial environment [74]. Microplastics have now 

been found in soil due to additives in agricultural soils, the application of 

compost derived from municipal solid waste, compost derived from waste 

recovered from landfills and at the same time the disposal of plastics in landfills 

[75]. Without going any further, there are reports in which it has been shown that 

the content of microplastics in terrestrial ecosystems can be between 4 to 23 times 

higher than in the ocean [76], for this reason is that microplastics in agricultural 

soils can cause unknown effects and for this reason be a danger to global food 

health [77]. 

Currently, mulch films are one of the most important sources of microplastics 

entering agricultural soils [75, 76] where they end up accumulating in crops [78, 

79]. In addition to the commonly used plastics, polypropylene, polystyrene and 

polyvinyl chloride, additives are added to different plastic products such as flame 

retardants [76]. 

In soil, there are 3 types of transformation, including fragmentation and 

degradation, which are physical and biological chemicals. Among these, 

chemical degradation influenced by UV radiation is important, generally 

dominating over the initial degradation processes of the vast majority of plastic 

waste. This process, phototransformation, is what begins to degrade soil plastics 

[80, 81]. In this way, as plastics become smaller and smaller, they accumulate 

and interact with soil compounds through electrostatic forces promoted by root 

exudates or by the feeding and excretion of different animals [79]. Thus, the 

incomplete process of microplastic degradation can result in the accumulation of 

these compounds at microbial and submicrobial scales, posing hitherto unknown 

dangers to the environment [76], in addition to the fact that in addition to animals 

in the terrestrial environment, the expansion and decomposition of plant matter 

can help the formation of macropores in the soil, being a transport agent for 

microplastic [82]. Among the most common contaminants in soils, we have 

organochlorine pesticides (OPs) [22, 83-86], polycyclic aromatic hydrocarbons 

(PHAs) [87-89] and heavy metals [90-93] that migrate vertically aided by the 

adsorption on the surfaces of microplastics in the soil through bioturbidification, 

runoff [94, 95], water infiltration [96, 97], irrigation channels [98], among others. 

While plastic particles can spread both through the air, allowing settlement 

anywhere (by atmospheric transport), including agricultural soils, sedimentation 

(see Figure 7) [99]. At the same time, landfills are a very important source of 

microplastics as there is a higher likelihood of photodegradation, oxidation and 

biodegradation of plastics [75, 100]. 

 

Figure 7. Transport of polluting compounds by microplastics transported by 

water infiltration by industries, landfills and atmospheric transport. 

Microplastic in animals: 

Microplastics have been detected in the tissues of different animals, such as in 

the gastrointestinal tracts of worms, fish, and crustaceans [48, 101, 102]. The fact 

that microplastics are reported in different aquatic environments, including 

pelagic zones and sedimentary habitats, makes them highly accessible to aquatic 

animals [103].  In East Asian seas alone, hundreds of thousands of km2 of 

microplastic parts have been estimated. 

The most common routes of exposure have been reported to be dermal contact, 

inhalation, and ingestion [104, 105], the latter of which has been estimated to be 

only for aquatic organisms [106], specifically, microplastics are located in the 

gut and interact with different physiological processes from there [107, 108]. 

Studies with green mussels (Perna viridis) have revealed that although no 

mortality was observed in the control and exposed groups, diet decreased in the 

groups with higher exposure to worn-out polyethylene microplastic and 

increased the number of microplastic particles [42] in the intestines of organisms. 

Thus, the microplastic present not only affects food, but also growth and 

reproduction [109]. Other studies have reported decreases in respiration with 

increased concentration of PVC particles during exposure [110]. 

Like the intestine, the lymph nodes, liver and spleen are greatly affected by 

microplastic particles (see Figure 8), however, the intestine is the most affected 

to affect nutritional absorption, metabolism and defense [111]. 
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Figure 8. Adsorption of persistent organic pollutants (POPs) by microplastics 

and their storage and accumulation in animal tissues. Image taken from Weixin 

et al., 2022 [69] 

For marine mammals, the effect of plastics and microplastics is no different, 

as they are affected through entanglement, ingestion, and habitat degradation 

[105, 112, 113]. An example is the misticetis or baleen whales that feed by 

megafilter that wrap large amounts of water next to the prey and it is this 

megafiltration that makes it prone to exposure to microplastics, in addition to 

contaminated prey [114, 115]. Without leaving behind land animals, there are 

post-mortem studies in tissues of dogs and cats in which plastics were found in 

35 of 49 animals ranging in size from 1 to 10 m [116]. 

However, not only have microplastics been found in animals, but it is also 

estimated that each human being consumes annually more than 100,000 

microplastics either by ingestion or inhalation [117], among these microplastics 

we find poly(vinyl chloride) (PVC), poly(ethylene) (PE), poly(propylene) (PP) 

[118], poly(styrene) (PS) [119] and polyethylene terephthalate (PET) [120]. 

Without going any further, it is estimated that people ingest between 37,000 and 

90,000 microplastic particles per year just when using a plastic cup or cup [121], 

however, depending on the type of plastic, the intake of the particles can be 

higher or lower (see Figure 9). 

 

Figure 9. Estimation of plastic consumption per cup used. Image adapted from 

Zhou et al., 2023. [121] 

On a day-to-day basis, humans ingest large amounts of microplastic 

unconsciously: 

- Electric plastic kettle: 4 to 29 million microplastics per liter during use. 

- Plastic bottle: 1 to 16 million microplastic per liter, equivalent to 1.5 million 

microplastic particles per baby per day. 

At the same time, microplastics released from cosmetic and personal care 

products come into contact with the skin and those plastic particles smaller than 

100nm can enter the skin barrier. Studies have verified that a large amount of 

microplastic can enter the human body and even the placenta, fetal liver, lungs 

[122], heart [123], kidneys [124], and even the brain [125, 126]. These and more 

actions that we carry out every day lead us to consider that microplastics are a 

great challenge for human health (see Figure 10). 

 

Figure 10. Illustration with the main characteristics of microplastic and its 

original compound present in different parts of the body. Corresponding 

acronyms: PET: Polyethylene terephthalate, PS: polystyrene, PP: polypropylene, 

PVC: polyvinyl chloride, PA: polyamide, PC: polycarbonate, PTFE: 

polytetrafluoroethylene, NC: nitrocellulose, EVA: vinyl alcohol, PEVA: 

polyethylene acetate, POM: polyoxymethylene, TPE: thermoplastic elastomer, 

PAN: polyacrylonitrile, SEBS: styrene-ethylene-butylene copolymer, PEO: 

polyethylene oxide, PCP: personal care products. Image taken from Kutralam-

Muniasamy et al., 2023. [127] 

CONCLUSIONS AND PERSPECTIVES: 

Each finding of microplastics in the different environmental matrices and in 

organisms (animals and humans) has meant a concern that grows over time, 

which is why every year studies related to microplastics and their effects on the 

ecosystem increase since so far only the origin is known, transport and 

accumulation, but the certain effects on different organisms and how it may affect 

the food chain are not known. Although plastics are one of the most important 

materials for almost all areas of work, it is important that their correct use and, 

as far as possible, their reduction, added to the good management of waste to 

avoid the dangers that plastic can mean and in our lives. 
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