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ABSTRACT 

Humanity and industrialization have led to ecosystems, in all their matrices, being compromised in terms of pollution generated by different metals. Among them 

we find mercury and lead, both correspond to metals highly dangerous for all ecosystems and their trophic chains. In this review we will look at the dangers of these 

metals and the ways in which they can be removed, ranging from more traditional processes to adsorption processes with materials derived from natural sources and 

how they can be an effective source of heavy metal removal. 
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1. INTRODUCTION 

The great increase in the human population and with it industrialization [1-3] 

have caused different ecosystems to be severely affected by different types of 

pollution. Currently, heavy metal pollution in water bodies is a growing and 

constant concern due to the serious problems generated around the world. These 

inorganic pollutants affect both surface and groundwater [4] directly affecting 

aquatic ecosystems and human health. Having the ability to bioaccumulate [5-7] 

in organisms, generate different types of adverse effects and can lead to death. 

This type of pollution is mainly associated with mining companies, petroleum 

refining, textiles, production of pesticides, paints, pigments, among others [8, 9]. 

Some authors [8] mention that unlike organic compounds, these are no 

biodegradable to any degree, making them more dangerous.  Due to the 

significant threat to environmental and human health [10], this problem not only 

occurs in different bodies of water but also includes all matrices:  Air pollution 

substantially affects the quality of both soil and water [11]. In the case of soil 

pollution, this is generated due to the indiscriminate release of different types of 

pollutants, among which are hydrocarbons, metals, pesticides, etc. Although 

these heavy metals are naturally in the Earth's crust, each of the human activities 

related to these inorganic compounds have led to a strong biochemical and 

biogeochemical imbalance [3, 12, 13]. Thus, in the case of water pollution, it 

occurs due to direct factors, such as discharges from industrialists, and indirect 

factors such as rainfall, or water runoff through the soil [10, 11, 14, 15]. To treat 

this problem, a number of removal methods have been suggested including 

chemical precipitation [16], electrodialysis, MOFs [17], flotation [18], 

membrane filtration [19], photocatalysis [20], nanofiltration [21] and adsorption 

[22-25]. However, this article will detail the different methods of adsorption, 

emphasizing removal using environmentally friendly materials. 

1.1 Heavy metals 

Metals have a wide variety of applications and that is why their importance is 

great. They are present in different metabolic and biochemical functions, 

however, serious problems can be caused if there is a deficit or excess of them. 

However, due to the great industrialization, large amounts of organic and 

inorganic pollutants have been released. The latter correspond largely to heavy 

metals that, due to their high molecular weights and densities above 5g cm3  [26, 

27], it becomes more difficult to remove them. As mentioned above, these types 

of elements generate many non-beneficial impacts for the environment, 

accumulating in all food webs and seriously threatening the health of all 

organisms [11, 28-32].Among the most researched and relevant heavy metals in 

the environmental sector are As, Cd, Cr, Hg, Pb, Ni, and Zn [33, 34], metals that 

when in contact with different ligands can influence characteristics such as 

toxicity and their environmental fate. There are records in which an increase in 

cell mortality is determined due to EDTA-Cu complexes [35], damage to the 

lungs and kidneys due to cadmium [23, 36] and other diseases associated with 

different heavy metals as detailed in Table 1. 

 

Table 1. General aspects of different heavy metals. 

Metal Toxicitty Main sources 
Permitted levels 

(domestic water) (mg L-1)* 
Reference 

Arsenic 
Dangers to the circulatory system and skin, can cause 

cancer 
Agricultural, electronic waste, metal smelting 0.01 [27] 

Cadmium Damage to lungs, kidneys and osteoporosis 
Batteries, natural sources, mining and/or metal 

working  
0.003 - 0.005 [23, 36] 

Mercury 
Damage to the heart, brain, delayed mental 

development 
Mining 0.002 [36] 

Lead 
Arthritis, renal dysfunction, fatigue, hallucinations, 

hypertension. 
Mining 0.01 [37] 

Cinc  Severe intoxications Industrial emissions 5 [38] 

Copper 
Damage, in proteins, lipids, DNA, production of free 
radicals. 

Agriculture, mining 1.3 [39] 

Chromium DNA damage, cancer development Metal fabrication, energy production  0.05 [40] 

This review will look at the general and chemical aspects of the metals mercury (Hg) and lead (Pb), as well as their effective removal. 

1.2 Mercury (Hg) 

Although different geological processes, such as magmatic intrusion and 

hydrothermal cycles can be important sources of Hg[41], this is one of the heavy 

metals that is mostly emitted in different ways into the environment by industries 

in which the burning of fossil fuels occurs [42] such as coal, production of 

nuclear fuel corresponding to the purification of uranium and separation of the 

isotopes U235 and U238 [43] and in addition to the incomplete burning of waste 

that has mercury [44]. Metal that at room temperature is liquid and where its 

different forms in which mercury exists, whether elemental, organic and 

inorganic, causes it to present different types of toxicity to the environment [44-

46]. As for inorganic mercury, it can be found in the form of mercury chloride 

(HgCl2), which being a highly volatile compound exists in the form of 

atmospheric gas, mercury oxide (HgO), mercury hydroxide (Hg(OH)2), and 

mercury sulfide (HgS). It has the organic form of mercury when it combines with 

carbon and forms methylmercury compounds such as CH3HgCl and CH3HgOH. 

This is how mercury species with an oxidation state +2 correspond to a highly 

toxic form that, as has been exposed, is released into the environment by different 

anthropogenic and natural sources [19].  
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Organic mercury species such as methylmercury (MeHg), ethylmercury 

(EtHg), dimethylmercury (Me2Hg), phenylmercury (PhHg) [47] and their 

inorganic forms are extremely important because they are used as parameters for 

the quality of the environment because, as already mentioned, they accumulate 

at different levels of the trophic chain being absorbed by plants where they then 

go to higher organisms generating serious problems [48] (see Figure 1). 

1.2.1 Methylmercury 

It corresponds to one of the organic and highly toxic forms of mercury, 

contained mainly in fish where it is predominantly found and where records point 

to a value greater than 80%. Although this species is associated with 

neuromuscular disorders [49], visual deficit, problems with speech, hearing [50], 

liver and heart [51], the mechanism by which methyl mercury triggers its toxicity 

is not fully known [49] 

 

Figure 1. Methyl mercury and its transport in the different trophic plots. 

Recently it was discovered that rice is also an important source of MeHg [52] 

however, the main sources correspond to mining processes [49], specifically gold 

mining [52] and where its high persistence and biomagnification, make this 

species, the neurotoxin that seriously threatens human and wildlife [53]. 

1.2.2 Ethylmercury. 

As well as methylmercury, ethylmercury is one of the common species of 

mercury [54] 

and that its greater presence in the environment is due to anthropogenic factors 

[55]. Exposure to this substance can usually occur at very young ages because 

ethylmercury is present in some vaccines as a preservative [56, 57] and although 

it accumulates in different tissues, its half-life is shorter in mammals [49]. 

1.3 Lead (Pb) 

Heavy metal whose main source is given to anthropogenic sources such as lead 

smelting and extraction [58], lead-based gasoline [59] battery processing and the 

burning of fossil fuels [58, 60] and that corresponds to one of the metals that at 

high concentrations turns out to be toxic [61], so like mercury it brings severe 

consequences for the kidneys [62], liver [63], brain development inducing 

apoptosis in the tissues of different organs [46]. The damage produced by Pb is 

such that over time its use in paints [64], gasolines [60, 65], welds [66], etc., 

where there has been a significant reduction in Pb exposure [59]. However, this 

element can cause effects that are not only harmful to humans, but also to plants 

and animals through soil, food, water, dust, etc. (see figure 2) being one of the 

most toxic due to the destructive influence on different metabolic processes [67]. 

The toxic nature of lead occurs by coming into contact with the cell and changing 

the biochemical cycle of life [68]. 

In addition, there are records where lead, as well as other heavy metals passes 

through 

the blood-brain barrier and leads to a high risk factor for diseases such as senile 

Alzheimer's [69] and dementia, decreasing IQ, kidney damage, reduced bone 

growth, carcinogenic problems, ataxia, central nervous system damage and 

epilepsy [70, 71]. 

 

Figure 2. Transport of lead through all matrices 

2. REMOVAL OF HEAVY METALS 

As already described, heavy metals have a great influence on all ecosystem 

matrices, affecting at the cellular level the different organisms that are in contact 

even in small quantities. That is why over the years we have been working on 

new technologies that are efficient and friendly to the environment so that the 

removal of metals is as efficient as possible. For this, a wide variety of removal 

methods have been reported, however, this time we will detail in 2 adsorption 

methods and in the removal by polymers and some derivatives. As already 

described, heavy metals have a great influence on all ecosystem matrices, 

affecting at the cellular level the different organisms that are in contact even in 

small quantities. That is why over the years we have been working on new 

technologies that are efficient and friendly to the environment so that the removal 

of metals is as efficient as possible. For this, a wide variety of removal methods 

have been reported, however, this time we will detail in 2 adsorption methods 

and in the removal by polymers and some derivatives. 

2.1 Removal by adsorption processes.  

A number of adsorption-based remediation techniques have been reported for 

the effective removal of heavy metals [72]. The efficiency of these techniques is 

mainly based on the surface of the adsorbent, since the generated system, 

adsorbate-adsorbent, is the one that will determine the type of interactions: if they 

are physical they will be Van der Waals forces, or chemical ones such as metallic 

or covalent forces [73]. 

2.1.1 Biochar 

We well know that mercury and lead are two of the most dangerous heavy 

metals for 

both human and animal health [74], as well as for the ecosystem and all its 

environmental matrices [75, 76].  In addition, there is a record where both metals 

mentioned are neurotoxins[77, 78] highly dangerous and that its greatest 

emissions to the environment are produced by anthropogenic activities and that 

they are extremely difficult to eliminate due to the high volatility and low 

solubility in water [79]. Currently, activated carbon is one of the most studied 

mercury adsorbents but has the disadvantages of being a low yield material and 

high cost of capital [80], factors that hinder its practical application. Thus, 

biochar is a good alternative due to its characteristics: porous material, contains 

various functional groups such as phenol, carboxyl and hydroxyl [81] and are 

usually made from agricultural, animal and wood residues.  

For the elimination of mercury by biochar, a series of methods can be 

considered, among which electrostatic interactions, ion exchange, precipitation, 

complexation and physical adsorption stand out [82-84]. There are a number of 

authors who detail the elimination of mercury, among which is the impregnation 

of mercury in biochar particles and accumulates on sulfurized biochar surfaces 

[83]; use of phosphorus-doped biochar as active sites for proper disposal [85]; 

development of magnetic biochar with tea residues to efficiently and 

environmentally friendly control the removal of elemental mercury [79]. In 

addition to mercury, biochar is highly efficient in terms of lead removal, where 

there is an extensive record in which modified biochar is used for lead removal 

in aqueous solutions  [86-88] and  that seems to be a rather promising technique 
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[89]; it is also argued that biochar modified with cotton stalks are highly efficient 

in terms of lead removal [90], where their results yielded six different adsorption 

mechanisms in which we find precipitation, ion exchange, complexation, among 

others [91]; other authors mention that the biochar of poplar powder [92] 

provides a good form of adsorption of metals such as Pb+2 of wastewater, there 

are also biochar of straw from crops [93], biochar doped with nitrogen and 

phosphorus in order to increase and and improve its adsorption capacity [94], 

other Biochar modified with MgO derived from crofton herbs where the author 

registers high efficiency and low cost for the elimination of Pb+2 [95], among 

other methods using biochar. 

2.1.2 Clays 

In general, clays can present a high level of environmental protection due to 

structural properties, where we find octahedral to tetrahedral structures of 1:1 

such as kaolinite and 2:1 such as montmorillonite [96]. Because of their 

structures, they have been extensively studied for metal removal [97, 98], dyes 

[99] and other organic compounds [100] and inorganic. While modified clays 

and clays can remove a number of contaminants, there are some of them that are 

mostly used for the removal of heavy metals, such as montmorillonite [101], 

betonite, kaolinite, vermiculite, and illite [102, 103]. Clays have been recorded 

to very effectively adsorb heavy metals such as lead and mercury [96]. In general, 

clay minerals behave as if they were chelating ion exchange absorbers for heavy 

metals [104], which is why clays can be good elements for the removal of metals 

and even more so modified clays [103] (see figure 3). 

 

Figure 3. Classification of the different types of clays. Image adapted [103]. 

This is why there is a series of works where many types of clays are detailed 

and their importance in terms of the elimination of heavy metals [96-98, 105-

110]. Work is reported in which bentonite grafted with poly(N-

acrylylglycinemide) (PNAGA – BNT) is used as a new clay-polymer material 

for the removal of mercury(II) [111] other works mention the montmorillonite 

processed with acid where they obtain a reduction of lead toxicity 75% [112]; 

there is also a mining residue that has developed into a new adsorbent, this by 

modifying copper bromide. This modification is based on tonstein and copper 

bromide (CuBr2-TCS) and allowed a removal efficiency ranging between 78.3 

and 92.1% [113], other clay modifications are based on halloysite nanotubes, 

HNT, and where their modification with magnetic microsphericals [CuCl2 – 

HNTs (SiO2-Fe3O4)] allowed the removal of mercury HgO, HgO, and HgCl2 

[114]. 

2.2 Removal by polymer materials 

As we have seen so far, there are several effective methods for the removal of 

different contaminants, traditionally there are the processes of advanced 

oxidation [115], ion exchange [116], coagulation / flocculation [117] and 

photocatalysis [118]. In addition to these methods, adsorption methods are one 

of the methods with high yields due to their characteristics in terms of simplicity, 

effectiveness and design [73, 119, 120]. However, in recent times the use of 

polymers as methods of removing contaminants has begun to be widespread, 

since there are many natural polymers available and synthetic [121] that fulfill 

this function (see figure 4). 

Over time, the appearance of trace metals and other contaminants in the 

different environmental, food and biological matrices [122] has begun to have 

greater attention, so the use of polymers for the removal of these contaminants 

has been a new focus of study. There is extensive literature reporting the use of 

different types of polymers for the removal of heavy metals and other 

contaminants [36, 38, 123-134], that is why we will detail in the removal via 

polymeric hydrogels and chitosan. 

 

Figure 4. Classification of some natural and synthetic biodegradable 

polymers. 

Hydrogels 

Hydrogels are considered three-dimensional cross-linked hydrophilic 

structures [135-138], are usually polymers, and have as their main characteristic 

to contain large amounts of water [139]. The swelling to which hydrogels are 

subjected occurs in 3 steps:  

a) Diffusion of water in the three-dimensional network of the hydrogel 

b) The polymer chains are loosened and 

c) Occurs the expansion of the structure of the hydrogel 

The networks of these hydrogels are established through covalent bonds [140] 

or interactions that are usually physical, such as hydrogen bonds [141], 

hydrophobic interactions [142], coordination [143], electrostatic [144] and 

supramolecular [145]. Over the years, a number of natural polymers have been 

studied such as polypeptides [146], polysaccharides [139], chitosan [147], 

alginates [148] and synthetic polymers such as acrylamide [149] and polyvinyl 

alcohol [150] to be able to synthesize hydrogels that have attractive properties 

[151] and efficient for use in different areas. The advance in the study of removal 

of contaminants with hydrogels arises from the complete non-efficiency of 

adsorbent materials, which despite being accessible, fast and having relatively 

good removal percentages, the lack of active sites [152, 153] for the adsorption 

of highly toxic heavy metals [154] causes their adsorption capacity to be 

decreased. Hydrogels, among many good characteristics they possess, have a 

particularity that bulk and porous structures [148] can increase their 

characteristics as an improvement in water separation and recovery while 

maintaining a good adsorption performance [155],  this capacity increases in 

metal cations [156] so it makes it an excellent material for the removal of heavy 

metals. Currently, there is a large number of hydrogels with different 

functionalities in order to provide improvements in terms of their efficiency. 
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Recently it has been explored in asymmetric hydrogels, these manage to 

generate spontaneously incorporated potentials due to the diffusion of 

counterions [157]. In this way, hydrogels have been developed that contain 

chemical gradients with forces that drive the transfer of mass and thereby achieve 

the elimination of heavy metals. This is how active sites are exposed inside 

hydrogels and polluting ions being permeable within hydrogels facilitate their 

removal [158]. 

 

Figure 5. Common synthetic fibers. Nylon 6, Acrylonitrile, and Polyethylene 

terephthalate. 

Currently, there is a lot of literature associated with the synthesis and 

application of this type of fibers and the application as chelators of heavy metals 

[159]: in one of the works the preparation of polymeric adsorbents functionalized 

by the amination of acrylonitrile-ethylene glycol-dimethacrylate is presented, 

this functionalized polymer obtained quite promising results in terms of the 

adsorption of lead ions in aqueous systems [160]. Other authors [161] have 

prepared polyacrylonitrile-based fibers with chelated Ag ions (Ag-SH-PANF) by 

chemical modification in order to obtain materials with highly efficient 

antibacterial capabilities. Other hydrogels for the removal of heavy metals are 

those based on cellulose [162-164], which seems to be quite good if we consider 

that cellulose production is between 75,000 and 100,000 million tons [162] and 

characteristics such as a high specific surface that allows to have more active 

sites and that their hydroxyl groups allow to have an easier graft of functionalities 

[165] of amine, ester and sulfate groups [166]. Although there is a series of 

cellulose-based hydrogels that allows the elimination of organic compounds such 

as methylene blue [167, 168] and phenol, is also extremely effective in terms of 

inorganic contaminants and heavy metal ions such as lead (Pb2+) where 98% 

removal percentages have been obtained with cellulose-based hydrogels from 

multiple active sites where the raw material corresponds to microcrystalline 

cellulose [169], and lead removal (Pb2+) corresponding to 44mg g-1 from 

cellulose/diatomite bead hydrogels modified with maleic anhydride [170]. 

In other cases, lead removal percentages of 70% have been obtained in 6 min, 

this is based on a porous keratin/polyacrylic acid hydrogel (keratin-PAA). The 

synthesized hydrogel had a specific surface area of 49.35m2 g-1 with pore 

distribution of 6.20 nm, which led it to have a maximum lead adsorption of 234.6 

mg g-1 [171]. As for lead, hydrogels are highly efficient in mercury removal [172, 

173]. To see the ways in which mercury can be removed by hydrogels, it must 

be taken into account that there must be functional groups related to mercury to 

obtain effective removals. For example, hydrogels containing amide groups are 

quite good for the removal of Cu2+ and Ni2+; amidoxime groups (R-C(NH2)=N-

O) form complexes with heavy metals such as Co2+, Cu2+, Ni2+, and Pb2+ [174], 

in addition to showing affinity for uranium [175]. Likewise, compound hydrogels 

such as poly(2-hydroxyethyl methacrylate-co-acrylamide) cross-linked rubber 

tragacanth (GT-Cl-(HEMA-co-AAm)) and another hydrogel compound poly(2-

hydroxyethylmethacrylate-co-acrylamide/zinc oxide) reticulated rubber 

tragacanth (GT-Cl-(HEMA-co-AAm/ZnO) hydrogel are also recorded, however, 

the latter is the one who presents a better mercury adsorption capacity [176]. 

Another of the hydrogels that allow the removal of heavy metals is the ligand of 

metabenzoporfodimethene (meta-BPDM) immobilized in guar rubber hydrogel 

of polyacrylamide / carboxymethyl (PAM / CMG) where removal percentages 

of 78.8% were recorded for zinc, 67.6% for cadmium and 80.4% for mercury 

[177]. Maximum mercury removal refers to and proves the base principle of hard 

soft acid [178-180]. In general, hydrogels correspond to highly efficient 

structures in terms of heavy metal removal [153, 158, 181], however, it is 

necessary to detail in other elements that are equally or mostly efficient and of 

natural matrices 

2.2.2 Chitosan 

Chitosan is a biopolymer generated from the deacetylation (see Figure 5) of 

chitin that is derived from the exoskeleton of crustaceans [15, 182, 183] 

corresponds to the most abundant biopolymer after cellulose [184, 185]. 

 

Figure 5. Desacetilation of chitin 

Among the properties it has, in addition to being biodegradable [186], non-

toxic, biocompatible [187] and economical, it has high adsorption capacities due 

to the functional groups amine (-NH2) and hydroxyl (-OH) that it has as active 

sites for the adsorption of different metal ions [188], so it corresponds to a 

copolymer consisting of 2-amino-2-deoxy-b-D-glucose linked to -1,4-

(deacetylated D-glucosamine) and N-acetyl-D-glucosamine with less molecular 

weight (MW) an crystallinity than chitin possessing a molecular weight greater 

than 100kDa [189, 190]. 

2.2.2.1 Physicochemical properties of Chitosan. 

Chitosan, increasingly attractive for use, has extremely important 

characteristics such as chelation, viscosity, solubility, among others. While the 

unbranched, linear form of chitosan has been reported to possess excellent 

viscosity, it is also known that this property can be modified by altering 

deacetylation conditions. One of the most important characteristics of chitosan is 

its high degree of deacetylation, since it enhances it in areas such as pharmacy 

and biotechnology, so the physicochemical characteristics of chitosan are 

affected by different factors among which we find crystallinity, MW, degradation 

methods and its degree of deacetylation (DD). If we detail in parameters such as 

MW and DD, we can find 2 types of chitosan: a) chitosan of high molecular 

weight, ranging between 190 and 375 kDa, with a DD > 75% and b) chitosan of 

low molecular weight, ranging between 20 and 190 kDa, with a DD <75% and 

(b) low molecular weight chitosan, ranging from 20 to 190 kDa, with a DD 

<75%. 

Authors have reported an inversely proportional relationship between the rate 

of degradation and DD, which also depends on the distribution of acetyl groups 

[187]. If you have a higher DD you will see a much lower degradation rate, and 

on the contrary, if we have a lower DD, we will have a degradation rate, we will 

have a faster rate of degradation [191, 192]. There is also a relationship between 

MW and the solubility of chitosan; authors report that there is a biological 

relationship between these two parameters and that is that the lower the MW, the 

greater the solubility that the molecule will have [193, 194]. In general, solubility 

will depend largely on the positioning of the acetyl groups that are throughout 

the chain, the methods of deacetylation, ionic strength and pH. For this last 

parameter we can see it through its three reactive positions, an amino group and 

two hydroxyl grous, where the amino group corresponds to the most sensitive to 

pH changes and is responsible for the cationic nature of chitosan [195-197]. It is 

recorded that at pH above 6, the amino group deprotonates and chitosan becomes 

insoluble [187, 198], however modified chitosan products have higher solubility 

in water over wider pH ranges [193]. 

2.2.2.2 Chitosan as material to remove heavy metals 

Due to the extensive properties of chitosan, a large number of works related to 

the removal of heavy metals based on modified chitosan and chitosan have been 

reported. However, due to properties such as solubility in acid medium, low 

thermal stability, low mechanical strength and low surface area [199] it is that 

the use of modified chitosan [15] has been preferred to facilitate the removal of 

metals. Among these modifications are cross-linkeders such as glutaraldehyde 

(GLU) [200, 201], ethylene glycol ether diglicidil (EGDE) [202, 203], 

epichlorohydrin (ECH) [204, 205], among others. These allow to provide a 

greater capacity of adsorption (among other characteristics) to the chitosan; for 

example, there are studies where cross-linked chitosan beads with GLU, EGDE 

and ECH are used for the removal of Cu(II) obtaining results of 59.67, 62.47, 

and 45.94 mg g-1 respectively [206]. Other modifications are those of grafted 

chitosan, which are based on the grafting of active functional groups that allow 

a better elimination of heavy metals [15], among them we find polyanilines 

[207],polyethylene glycol [208], acrylonitrile [209], acrylamide [210], among 

others.  
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One of the most recent modifications are those related to magnetic chitosan 

which, although its industrial application is very challenging, including 

paramagnetic nanoparticles in the design of chitosan-based nanoadsorbents gives 

it quite promising magnetic properties in terms of metal removal [15]. Based on 

magnetic chitosan, a series of investigations have been reported detailing the 

removal of metals such as Cd(II), Cu(II), Zn (II) [211], Cr(VI) [212], Pb(II) 

[213], among other metals. 

2.2.2.3 Removal of mercury by chitosan 

Different forms of chitosan have been recorded for the removal of many heavy 

metals. It is not the exception for the case of mercury since there are fluorescent 

hydrogels based on chitosan for the adsorption of Hg2+ and Hg+, for which the 

authors prepared NH2-BODIPY [214] with reduction of NO2 to NH2 in order to 

be able to introduce it into chitosan through a Schiff base formation reaction. As 

seen in Figure 6, mercury is combined with the C=N action site and adsorption 

capacities of 121 mg·g-1 were obtained, which, according to the authors, 

corresponds to seven times more than the original chitosan [215]. 

 

Figure 6. (a) Chitosan modified with -NH2 BODIPY and (b) chitosan – 

BODIPY with mercury. Image adapted [215]. 

In other studies, ionic printing was performed by manufacturing sorbents 

printed with mercury ions derived from modified chitosan. It has been considered 

that functionalized chelating materials with electron donor ligands have the high 

capacity to form extremely stable complexes when they manage to coordinate 

with metal ions. For that the authors point out the use of the Schiff base ligand 

that was derived from the acid-4-amino-3-hydroxybenzoic acid and the 2-

pyridinecarboxaldehyde (HPB) to then incorporate it into the chitosan through 

the amide bonds. Thus, the modified chitosan polymeric ligand that was obtained 

was combined with the Hg(II) ions to achieve the polymeric complex, achieving 

the impression in the crosslinking with glutaraldehyde, eliminating the Hg(II) 

ions and reaching a maximum capacity of 315 mg·g-1 [216]. 

The use of a compound of Ulva lactuca/chitosan is another of the methods used 

that allow a good removal of heavy metals such as mercury. The authors used 

Ulva lactuca (also known by the common name sea lettuce) due to its low 

economic cost, it is an excellent bioindicator material [217] that allows to 

evaluate water contaminants, however, despite the fact that mercury removal is 

quite efficient, the preparation of hybrid materials from natural polymers such as 

chitosan [218, 219], allows you to have greater and greater adsorption/removal 

capacities of Hg2+. In this study, the authors report a sorption capacity of 189, 

144 mg·g-1 of Hg2+, at a rate 93% faster than the utilization of Ulva lactuca alone. 

2.2.2.4 Removal of lead by chitosan. 

As for mercury and all other heavy metals mentioned in this article, there are 

a number of methods in which chitosan, mostly modified, is used to 

remove/remove lead (Pb2+). A rather attractive technique is based on the use of 

chitosan with microbial adsorbents [220, 221] in which th separate or combined 

use of chitosan with Bifidobacterium longum and Saccharomyces cerevisiae 

allowed effective removal of lead (II) in aqueous solutions [222]. However, 

despite the fact that the elimination was effective, it was recorded that the 

chitosan/B. longum adsorbent presented a higher percentage of adsorption than 

the other materials [223]. The study analyzed variables such as initial 

concentration, contact time, temperature and pH, where the maximum percentage 

of lead (II) adsorption was 97.6% [221]. Other studies suggest yeast biomass 

modified with ethylenediamine coated with magnetic microparticles of chitosan, 

a material that allows the adsorption of lead ions at high capacities. The 

preparation of these materials was carried out at temperatures of 20, 30, and 40ºC 

with maximum adsorption capacities of 121.26, 127.37, and 134.90 mg·g-1 

respectively  [206]. Heavy metal removal studies, specifically lead, are reported 

with magnetic silica nanoparticles coated with chitosan modified with 

dietenetriaminapentaacetic acid (DTPA), a chelating molecule with three 

nitrogen atoms corresponding to tertiary amine and five carboxylic groups that 

are as a semi-flexible ligand [224], to improve the adsorption of lead from 

wastewater. In this lead removal system, methyl blue (MB) was used with the 

aim of improving the removal capacity due to its sulfonic acid groups in the 

molecules, creating new specific active sites for lead adsorption [213]. 

CONCLUSIONS 

As already mentioned, over time a wide variety of techniques have been used 

for the removal of heavy metals (reverse osmosis, membrane filters, ion 

exchange, clays, biochar, hydrogels, etc.) from wastewater, however the need to 

have efficient and low-cost materials has been increasing. In general, the removal 

of heavy metals such as lead and mercury, with adsorbent materials is considered 

a fairly economically viable, sustainable, efficient and highly replicable 

technique that allows the elimination of about 97% for the case of lead and about 

93% for mercury, so continuing with research of this type could allow in the 

future, the removal of 100% of these metal ions that today are a serious problem 

for the environment and humanity. 
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