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ABSTRACT 

Manufacturing pharmaceutical products is one of the most regulated industrial processes due to the importance of its effects on human health. These processes 

require many physical and chemical determinations through chromatographic techniques coupled with different detectors. However, the pharmaceutical industry is 

not considering the growth that spectroscopic techniques have had in these fields of application, especially to monitor the blending process. 

This study evaluates different sampling methods for pharmaceutical blending processes by near-infrared spectroscopy (NIRS) and Vis-NIR spectroscopy.  

The pharmaceutical mixture consisted of three active ingredients at different concentrations. Various qualitative and quantitative strategies were used to evaluate the 

endpoint of the blending process. The results revealed the feasibility of different spectral analyses to establish the homogeneity of the mixture, which may be especially 

useful for applications at the industrial level in routine analysis or as a first choice. HPLC confirmed the final blend. 
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1. INTRODUCTION 

Pharmaceutical industry is one of the most regulated sectors in the industrial 

field due to the importance of its products on the consumer's health. The main 

function of a pharmaceutical product is to diagnose, prevent, or cure diseases. 

Before releasing its product to the market, the pharmaceutical industry must 

perform physical and chemical tests, generally using HPLC, GC, or UV-Vis to 

guarantee effectiveness and medicine safety. However, these techniques are 

laborious, time-consuming, and expensive. In this context, the Food and Drugs 

Administration (FDA) appears as an example of regulatory agencies which are 

responsible for establishing the quality requirements to the pharmaceutical 

products by formal documents such as the Pharmacopoeias or the quality guides 

of the International Conference on Harmonization (ICH) Q2 and Q8 [1, 2]. 

Tablets are the most used pharmaceutical form [3] and therefore require 

considerable effort in production and research. In the production process of 

developing a pharmaceutical tablet, the blending process is undoubtedly the most 

crucial stage to guarantee a high-quality tablet [4]. This process requires that raw 

material mixtures, mainly in the powdery state, must be entirely homogeneous 

to guarantee the correct dosage of each tablet in the production batch (5). To 

ensure homogeneity is necessary to measure the active pharmaceuticals 

ingredient (API) concentration at certain intervals of time and in different critical 

areas of the blender. When API concentrations are kept constant with a specific 

standard deviation, it is considered a homogeneous mixture, and the process is 

finished. 

To improve the understanding of pharmaceutical product manufacturing, the 

FDA in 2004 proposed a new work philosophy called Process Analytical 

Technology (PAT), which essentially aims to "to enhance understanding and 

control the manufacturing process, which is consistent with our current drug 

quality system: quality cannot be tested into products; it should be built-in or 

should be by design" [6]. PAT advocates continuous quality control, in each stage 

of the manufacturing process, from the reception of raw materials (proof of 

identity) to the finished product using the appropriate methods to track in real-

time (online or in-line) throughout the entire process. 

In this context, spectroscopic techniques have notably increased their 

participation in qualitative and quantitative pharmaceutical studies [7-10]. 

Especially, they have performed a fundamental role in developing the PAT 

initiative due to its non-invasive nature and the possibility of sampling at any 

point in the production chain to obtain information related to numerous quality 

attributes, which allow multicomponent analysis to be carried out. For example, 

from a spectrum, analyze samples without pretreatment, online monitor 

processes, and delegate routine analyzes to non-specialized personnel [11, 12]. 

 It is because of the possibility of obtaining information directly from the 

sample (solid or liquid) without any previous sample preparation. [13-15]  

Many authors have dedicated their careers to designing methodologies based 

on spectroscopic techniques to detect the optimal blending time in quantitative 

[16, 17] and qualitative [18, 19] ways and reveal the analytical error incorporated 

by traditional methodologies to determine the optimal blending time [20-22]. 

However, the establishment of spectroscopy as analytical techniques of the first 

choice in production laboratories has not evolved at the same place in academia, 

possibly due to the substantial initial investment involved in the implementation 

of the PAT initiative. This work aims to develop analytical alternatives based on 

simple and easily accessible spectroscopic techniques that reliably monitor a 

blending process. Furthermore, the distribution of the active ingredients in the 

final tablets and their relation to the blending time was studied. 

2. MATERIAL AND METHODS 

2.1 Samples 

The samples analyzed were portions of pharmaceutical mixtures composed of 

paracetamol and acetylsalicylic acid in 26.3%, and caffeine in 6.8%, as active 

ingredients. Also, three excipients that together are 40.6% of the full mixture. 

This mixture is the intermediate phase in producing a pharmaceutical tablet 

marketed in Chile to relieve headaches. Each commercial tablet weighs 

approximately 950 mg and contains 250 mg of paracetamol, 250 mg of 

acetylsalicylic, and 65 mg of caffeine. Sigma-Aldrich, USA, provided each 

active ingredient and excipients, and pharmaceutical laboratory provided the 

production guidelines used to formulate the product. 

2.2 Spectroscopic instruments, software, and pharmaceuticals equipment 

Two spectrophotometers to monitor the blending process was used. A Multi-

Purpose Analyzer (MPA) Bruker FT-NIR spectrometer (Bruker Inc.) and OPUS 

software. The spectra were collected in reflectance mode in the spectral range 

between 12500-3750 cm-1 (800-2666 nm), with a resolution of 2 nm and 32 scans 

per spectrum.  

A VIS-NIR portable spectrophotometer Ocean Optics USB 4000  

(380-1100nm) with OceanView spectroscopy software was used to record the 

data. 

The blending experiments were conducted with a diffusion mixing mechanism 

using an ERWEKA AR 400 blender equipped with a container of 5 L bin and 

made of polymethylmethacrylate (PMMA), allowing real-time measurements 

during the blending process for continuous study.  
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2.3 Develop of quantitative NIR spectroscopy model  

This work contemplated the development of qualitative and quantitative 

analytical methodologies based on spectroscopic techniques to determine the 

endpoint in a pharmaceutical blending process. This section details the steps to 

construct the predictive model to quantitatively determine the optimal blending 

time. 

2.3.1 Calibration samples 

The construction of the calibration set is a critical step to obtain a selective, 

accurate, and robust quantitative calibration model.  

 

For this study, the calibration set had to cover a wide interval of concentrations 

to consider the possible concentrations in which each API can be found during 

the blending process. Hence, the calibration samples were formulated by a D-

Optimal design with five levels concentrations per API; -3.4, -2, 0, 2, 3.4, 

equivalent to 7.3%, 15%, 23.6%, 35.0%, 40.1%w/w for paracetamol and 

acetylsalicylic acid. And 3.8%, 5.0%, 6.8%, 8.5%, and 9.7% w/w for caffeine. 

The concentration levels that the design did not cover were included manually. 

Finally, 65 mixtures were obtained, covering a concentration of 0.2 – 98 %w/w 

depending on the API.  

 

The construction of the calibration samples was carried out by directly 

weighing the pure components; thus, it is possible to exclude analysis using a 

reference method. To include the variability from the excipients, a matrix was 

prepared that had the nominal concentrations of each excipient (matrix 1) and 

two other mixtures of excipients with variations of 80 and 120% for the nominal 

concentrations of each excipient (matrix 2 and 3 respectively). Finally, the 

calibration set consisted of 21 samples with matrix 1, 22 with matrix 2, and 22 

with matrix 3. In addition, to emulate the industrial production process and obtain 

the appropriate particle sizes, each mixture component was sieved with a sieve 

number 16, as indicated by the pharmaceutical laboratory. 

2.3.2 Samples of external validations 

To evaluate the model's predictive capacity, 30 mixtures previously were 

sieved and then mixed with different API concentrations within the interval 

covered by the calibration set. The excipient variations were included in the same 

way as already indicated, considering ten samples with each matrix. 

 

All samples (calibration and validation) were analyzed following a random 

scheme on different days to avoid a possible systematic effect due to daily 

instrumental variations. 

2.3.3. NIR model evaluation test 

After obtaining the best predictive model according to the parameters indicated 

in the next section, some experiments were performed to ensure the reliability of 

the results. The evaluation was performed in terms of API specificity, robustness 

(quantitative excipient variation), and precision (repeatability and intermediate 

precision, to repeatability test). The spectrum of one sample was recorded ten 

consecutive times removing and replacing the same sample. The intermediate 

precision was estimated by recording the spectrum of the same sample on 7 

different days). 

2.4 Spectral pre-processing  

A Partial Least Square regression (PLS) by leave-one-out cross-validation was 

built for the quantitative determination by FT-NIR Bruker spectrophotometer. 

To enhance the chemical information contained in the spectra and to reduce the 

impact of physical properties, e.g., scattering due to different particle sizes, 

various preprocessing methods were applied for optimization of the calibration 

model: normalization, first and second derivatives (Savitzky-Golay), standard 

normal variate transformation (SNV) and combinations of these. The best model 

was selected based on conventional criteria, coefficient of determination (R2), 

the root-mean-square error of calibration values (RMSEC), and root-mean-

square error of predictions values (RMSEP). 

 

The Ocean Optics VIS-NIR spectrophotometer spectra were transformed from 

reflectance to absorbance units (log1/R). They were smoothed with a window of 

59 points followed by SNV as spectral pretreatment.  

2.5 Blending process 

The blending process studied was carried out in our laboratory on a pilot scale 

following the production guidelines used by the pharmaceutical laboratory. It 

was possible to emulate some of the production plant's actual working conditions 

and procedures. 

Firstly, the APIs and the excipients were sieved with sieves number 16 and 40; 

respectively, each component was incorporated into the mixer in the quantities 

necessary to complete a 200 g of mixture corresponding to 40% of the total 

capacity of the blender. The blending process was performed at a speed of 30 

RPM in 8 minutes, enough time to achieve optimal blending [23]. 

The process was studied discontinuously and continuously (without stopping 

the process of spectral recording). The discontinuous analysis was carried out 

with sampling intervals at 0.5 minutes; the type of sampling and the way to detect 

the optimal blending time are determined by the technique used for the study. On 

the other hand, the continuous study was carried out using the Vis-NIR 

spectrophotometer. For it, a working system was installed that allowed the 

spectra to be recorded without stopping the blender. 

2.6 Blending Endpoint Detection by spectroscopies methodologies  

The chemometric model developed in section 2.3 was used to quantitatively 

detect the optimal blending time. However, this study seeks to innovate in 

analyzing this critical process by developing and evaluating qualitative analysis 

methodologies. This section describes the different methods used to achieve this 

objective. Different statistical strategies are included that allow a qualitative 

analysis without the need to extract portions of samples from the mixer. 

2.6.1 Spectral recording  

Before explaining the procedure with which the spectra were recorded for the 

study, it is necessary to clarify that when the author speaks of "sampling," he 

refers to extracting a portion of powder from inside the blender and not recording 

spectral. 

The quantitative NIR at-line study spectra were recorded through segregated 

sampling, or sampling thief, in 7 areas within the mixer, as shown in Figure 1A. 

The extraction of the sample was carried out with a spear-type collector specially 

designed for this type of sampling (Figure 1B). In each extraction, 500 mg of the 

mixture was collected and placed in an Eppendorf tube to be analyzed in triplicate 

by NIR spectroscopy. To the spectral analysis, the powder samples were placed 

in vials directly on the instrument's sample window, and three spectra were 

obtained by removing the sample between each record, and the spectra were 

averaged. 

 

Figure 1. A) Blender areas to spectral samples records were made; B) Sampler 

thief used to segregated sampling; C) Mechanism to obtain Vis-NIR spectra by 

segregated sampling; D) Conditioning the probe for records inside the blender. 
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For the qualitative study with the Ocean Optics Vis-NIR spectrophotometer, 

in addition to segregated sampling, the spectral recording included mechanisms 

that allowed to register spectrum directly from the mixture without extracting a 

portion of it. In this way, the aim was to reduce the analytical error generated by 

segregated sampling. The strategies used to obtain the spectra using the Vis-NIR 

spectrophotometer are described below and were used for the qualitative 

detection of optimal time in a pharmaceutical mixture. 

a) Through a segregated sampling that contemplated the extraction of samples 

in 7 zones of the mixer (figure 1A). Each extracted sample was deposited in 

a semi-closed black special object holder, which reduces light pollution (a 

significant pollution factor in this type of instrument). Then, to improve the 

reproducibility of the spectral records, the sample was compressed with a 

spatula to a powder layer thickness of approximately 3mm. Immediately 

after compressing the sample, ten spectra were recorded at different points 

on the powder surface. Finally, the extracted sample was reincorporated into 

the mixer to continue the process. Figure 1C shows the system for samples 

analysis using Vis-NIR and sampling thief. 

b) It recorded the spectra directly in the established places inside the blender. 

For this task, a rigid conduit was incorporated into the top of the probe 

instrument. Thus, it is possible to introduce it into the mixer for spectral 

recording without the probe surface having contact with the sample, as 

shown in figure 1D. The spectrum was recorded by triplicate in each 

established area. 

c) Continuous recording spectra. The instrument probe was installed outside 

the blender in the lower area at a constant distance of 5 cm, as shown in 

figure 2. Measurements were carried out through the cubic PMMA container 

every 2 seconds (time necessary for the instrument's laser to record the 

spectrum at the same point), recording 240 spectra at the same point 

continuously throughout the blending process. 

 

a: blender machine; b: Probe; c:  Source; d: Detector; e: Laptop 

Figure 2. Experimental configuration of the instrument for the analysis of the 

blending process continuously. 

2.6.2 Data analysis 

Quantitative determination 

The data analysis for the quantitative determination of the optimal blending 

time was carried out similarly to that by the pharmaceutical industry, as required 

by the USP. i.e., quantifying each API in the areas where the sampling was 

carried out, and the blending is considered homogeneous when the concentration 

of each API reaches a value close to the nominal value of the product with a 

relative error of 10%. Also, the concentrations at each point of the mixer should 

not differ by more than 3%. These same criteria were adopted in this study to 

determine the mixing time, quantifying the APIs through the chemometric model 

developed using NIR spectroscopy. 

Qualitative determination 

The data analysis for qualitative determination of homogeneity blend using the 

Ocean Optics Vis-NIR spectrophotometer contemplated the evaluation of 

multiple mathematical methods widely used in NIR spectroscopy that allows 

evaluating the degree of variability of a set of spectra as a function of time. 

a) One of the simplest and commonly used methods for this purpose is the 

"Moving Block Standard Deviation" (MBSD) [24, 25]. This method for 

determining homogeneity during a blending process calculates the standard 

deviation for each wavelength of a moving block of several consecutive 

spectra that move one spectrum at a time through the spectra recorded in the 

monitoring of the blending process. In the study for monitoring the blending 

process, a 7-spectrum moving block was chosen. Thus, optimal mixing is 

reached when the relative standard deviation of continuous spectra reaches 

a certain reference value. 

b) Another algorithm arises from the MBSD called "Difference Moving Block 

Average against Target Spectrum" (DMBA-TS) [26, 27], which consists of 

calculating the difference of the values obtained by averaging a block of 

consecutive spectra (7 spectra in this study) that move one spectrum at a time 

through the spectra recorded in the monitoring, against a target spectrum 

(spectrum of a mixture considered homogeneous with the nominal 

concentration of the active ingredient). The standard deviation of the values 

obtained is then calculated for all wavelengths. 

c) In addition to the standard deviations of a set of spectra, spectral variations 

can be determined using the Spectral Dissimilarity. For this, the difference 

between two consecutive spectra (DIS) [27] or on a reference spectrum 

(DIS-ATS) [28] is calculated. This mechanism also includes the 

determination of the standard deviation of the differences in all the 

wavelengths, which allows detecting the spectral variability throughout the 

process. 

d) Principal Component Analysis is an algorithm used to find small differences 

between a given data set, capturing the primary source of variation in the 

samples and grouping them into a few new latent variables o principal 

components (PC). This makes the PCA a powerful tool to determine the 

blending endpoint through the study of the variability of the scores since 

these describe with greater certainty the most relevant causes of variation of 

the spectral set [29]. 

• A simple and reliable way to determine the optimal blending time 

through the PCA is with MBSD applied on the set of scores. Similarly, 

a relative standard deviation of less than 3% indicates blending 

homogeneity. 

• The final blending time can also be determined through T2 Hotelling, 

which is a statistical parameter widely used to determine whether or not 

there are significant differences in a multivariable data set, with a 

specific confidence interval, T2 Hotelling. for observation 𝑖, based on 

components A is defined as: 

        𝑇2 = ∑
𝑡𝑖𝑎
2

𝑠𝑡𝑎
2

𝐴
𝑎=1                                                    Equation 1 

       where s2 is the variance of ta according to the class model. 

The analysis contemplated evaluating the T2 value to each score; the scores 

below the T2 crit (established based on the confidence interval) are considered 

the score or time. The mixing is homogeneous since it does not have significant 

spectral differences. 

• A third way to determine the endpoint of the blending process through the 

PCA was described by Puchert et al., who called it Principal Component 

Scores Distance Analysis or PC-SDA [30]. For this analysis, it is necessary 

to calculate the Euclidean distances between two consecutive scores and 

then determine the standard deviation of these distances to evaluate them in 

the time domain. 



J. Chil. Chem. Soc., 66, N°4 (2021) 

 

5390  
 

The following equation determines Euclidean distances: 

𝑑1 = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2       Equation 2 

Using this method, it is possible to create a design space with a determined 

confidence interval represented by the scores with less variability. In this way, 

the optimal mixing is reached when consecutive scores fall within this 

established design space. 

2.7 Determination of blend endpoint by reference methodology 

The optimal blending time was also determined using the pharmaceutical 

industry's reference methodology, which includes quantifying the APIs by a 

chromatographic analysis, as described in the introduction. 

Each portion of the mixture extracted during the process was analyzed with a 

Shimadzu Prominence HPLC (Modular HPLC) coupled to a model SPD-20A 

UV / vis detector with a model LC-AT pump and an RP-18 LiChroCART 125-4 

column (125 mm * 4mm LIChrospher 100 particle size 5um). When the 

concentration of the analyte under study does not differ from 3% for the seven 

sampled areas (figure 1A), it's considered a homogeneous mixture. In this work, 

the chromatographic methodology validated by the pharmaceutical laboratory 

was used, and it consisted of a Water : Methanol: Acetic acid (69: 28: 3) as 

mobile phase, a column Intersil C-18 as stationary phase, and a flow rate of 1.5 

mL/min. 

3. RESULTS AND DISCUSSIONS 

3.1 NIR spectroscopy  

3.1.1 Spectral pretreatments and previous analyzes 

The spectral recording was performed in reflectance mode, and they were 

transformed into absorbance units. To evaluate the effect of spectral 

pretreatment, the spectrum of the three APIs and an excipient matrix were 

recorded, which are shown in Figure 5A. In the same way, Figure 5B shows the 

same spectra pretreated with an SNV followed by the second derivative using the 

Savitzky-Golay transformation with a 15-point window of 12489cm-1 and 

3702cm-1. After pre-processing, it is possible to appreciate a clear decrease in 

spectral differences from the basic sources of spectral variabilities, such as 

particle size or other fiscal variabilities. The literature describes this combination 

of treatments as the most suitable for the use of NIR and based on the results 

shown in the previous section. It was decided to use these algorithms to pretreat 

all the spectra used in constructing the PLS model for this study. 

As described in section 3.2.2, the calibration set consisted of 65 mixtures 

prepared by weighing, covering each API's wide range of concentrations. The 

validation set was built in the same way and was made up of 30 powder mixtures 

with API concentrations within the range covered by the calibration set. 

 

Figure 3. Representation of the raw spectra A) and treated by SNV followed by a 2D of 15 points B) from each API and a matrix of excipients; C) Spatial distribution 

of the calibration samples concerning the first three principal components obtained by performing a PCA on the entire set; D) Comparison of the pure spectra of each 

API with the linear representation of the regression coefficients of the first PC obtained in the PLS models. 



J. Chil. Chem. Soc., 66, N°4 (2021) 

 

 5391 
 

Before the construction of the PLS model, a PCA on the 65 mixtures of the 

calibration set using the spectral pretreatment indicated above was performed. 

Figure 3C shows the spatial distribution of entire samples based on the first three 

principal components. These three latent variables add up to 98.5% of the 

explained variance, 47% for PC1, 31.5% for PC2, and 20% for PC3, which shows 

high representativeness of the original matrix in the new reduced matrix. If it is 

related to the concentrations of the samples with their distribution in the different 

axes, those mixtures in which average concentrations of the APIs predominate 

(20-60% w/w) tend to cluster in the center of the graph. On the other hand, those 

samples where the percentage of one or the other API is above the value of 60% 

or less than 15% tend to be distributed towards the ends of the component as the 

concentration varies. e.g., at the extremes with negative PC1 values, samples 

with high PAR concentrations are positioned. 

In contrast, those with low concentrations are grouped into positive scores, 

indicating that this PC mainly explains PAR's physical information in the 

mixture. On the other hand, the values of positive scores in PC2 and PC3 group 

samples with high concentrations of ASA and CAF, respectively, while samples 

with low concentrations are grouped in negative scores. The main differences 

detected by the PCA in the calibration set are mainly due to the difference in 

concentrations between each sample, represented by the first three PCs.  

3.1.2. Model development and analytic evaluation 

The PLS models used to quantify each API were built from the analysis of 63 

calibration mixtures, excluding two samples considered as outliers (detected 

through statistical analysis with Hotelling T2 criteria). The spectral working 

range evaluated several quantification models and the pretreatment used. Finally, 

each chemometric model was constructed in the spectral range of 9126-4520 cm-

1, and all spectra were treated with SNV followed by the second derivative with 

a 15-point window. 

The predictive power of each model was evaluated by analyzing the RMSECV 

obtained from the LOO cross-validation, and the RMSEP got from the 

predictions of the external calibration set constructed as indicated above. Table 

1 summarizes the analytical parameters calculated for the models that gave better 

predictions. 

Table 1. Figures of merit obtained in predicting the best PLS models 

developed for each API. 

API 
Nº 

c.s 

Nº 

v.s 

API conc 

(%w/w) 

RMSECV 

(%w/w) 

RMSEP 

(%w/w) 
R2 

Precision 

(rep/int prec) 

Nº of 

PCs 

Variance 

explained (%) 

PAR 62 30 0.21-98.53 1.07 0.71 0.981 1.59/1.35 4 98 

CAF 62 30 0.51-98.32 1.15 0.89 0.978 1.85/1.54 4 98 

ASA 62 30 0.23-99.12 0.92 0.44 0.992 1.38/1.41 4 99 

c.s: calibrations samples  v.s: validations samples. 

The RMSEP of the three calibration models is within an acceptable range 

between 0.44% to 0.89% depending on the API. Meanwhile, the RMSECV 

values fluctuated between 0.91% to 1.15%. For the three calibration models, a 

lower RMSEP value was obtained than the RMSECV, which indicates a high 

predictive capacity of the model and the absence of an overfit in the spectra of 

the samples. For the PAR and CAF predictions, the models were able to predict 

with great accuracy the majority of the samples in the established concentration 

ranges, the highest prediction errors were observed in those mixtures with 

extreme and opposite concentrations between both APIs, that is, the maximum 

concentration of CAF with minimum PAR and vice versa. Both APIs have quite 

a few overlapping variables in common (Figure 3B), and the prediction 

performance could eventually be compromised in those combinations of 

concentrations. However, in the calibration samples with nominal concentrations 

of each API, they were predicted with great accuracy with RMSEP less than 

0.5%, withstanding the variations in the concentrations of the excipients included 

in the validation set.  

The model's specificity can be demonstrated by comparing the regression 

coefficients of the first PC with the pure spectra of the ingredients, and this 

representation can be seen in Figure 3D. Throughout the spectral interval used 

for the construction of the models, the regression coefficients of PC1 indicate 

strong spectral coincidences with some spectral signals for each API, being in 

the range 8500-4500 cm-1 with the variables that contain the most differentiating 

information for each API, the great ability to detect ASA standing out above the 

other two APIs. This information, together with that provided by the PCA, 

demonstrate that the calibration models are specific for each API and, therefore, 

capable of predicting the analytes with the help of 4 principal components, 

making clear that the variability of the excipients is explained by PC4-5 and does 

not affect the prediction of the samples. 

3.2 VIS-NIR spectroscopy   

Qualitative determination of the optimal blending time has been a topic widely 

studied throughout the last two decades, for which NIR spectroscopy has 

performed a fundamental role as an analysis tool. However, Vis-NIR 

spectroscopy in this field is nil, and its application is intended to analyze liquid 

samples or animal feed [31, 32]. In this context, this section shows the results 

that demonstrated the feasibility of carrying out analyzes of solid pharmaceutical 

mixtures using this technique. 

3.2.1 Spectral pretreatments and previous analyzes 

The previous analyses of Vis-NIR spectroscopy allowed evaluating the 

technique's performance to differentiate the different components contained in 

the pharmaceutical mixture. The importance of this study lies in the little 

absorption that the analytes have in the spectral working range. 

For this, the pure spectra of the three APIs and the spectrum of a mixture of 

excipient in their nominal concentrations were obtained in the spectral range of 

380-1100 nm. However, due to a large amount of noise present in the extreme 

areas of the spectrogram, all spectra were obtained between 400-970 nm. A 

spectral pretreatment was applied to reduce the spectral differences associated 

with light scattering, consisting of smoothing with a 59-point window followed 

by an SNV. 

Figure 4 shows the effect of the spectral treatment applied on the spectra of 

each component. It is possible to appreciate a notable decrease in noise that goes 

hand in hand with a considerable increase in the resolution of some bands, 

especially at the beginning of the spectrogram and on the 850nm. In these areas 

is the most significant differentiation due to the chemical characteristics of each 

component. On the other hand, in the interval that the visible region 

contemplates, due to the poor energy absorption, the differences resulting from 

the path taken by the light beam of the instrument predominate, which is related 

to the physical characteristics of the particles (shape and size mainly). 

 

Figure 4. Spectra of each API and a matrix of raw excipients (A) and 

pretreated with a 59-point smoothing followed by an SNV (B); Spatial 

distribution of the scores on the first four principal components obtained by 

performing a PCA on the spectra of each API and the excipient matrix (C). 
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A PCA was performed on 80 spectra from the three active ingredients and the 

mixture of excipients (20 spectra from each API and 20 spectra from the matrix 

of excipients) to analyze which variables explain the main differences between 

each API. Smoothing with a 59-point window followed by SNV was performed 

on each spectrum, the PCA validation was done using full cross-validation with 

80 segments. The analysis results are shown in Figure 4, where the distribution 

of the four analyzed groups is shown about the first 3 PCs (97% of the explained 

variance). 

A clear separation of the four study groups is evident, where PC1, with 73% 

of the explained variance, can differentiate them along its axis. Within this PC, 

the spectral differences of the caffeine about the matrix of excipients influenced 

by the variables corresponding to the 400-430 and 870-945 nm are mainly 

explained. These variables have a considerable positive correlation with caffeine, 

especially in the 400 nm zone, facilitating its differentiation from the other 

components. The rest of the variables explain the small differences of the 

samples that help to a lesser extent to separate the four groups.  

The results have shown that the spectra obtained by Vis-NIR spectroscopy 

extract small physical and chemical information from each component, making 

it possible to differentiate them employing adequate data processing and 

Principal Component Analysis, thus eventually detecting qualitative differences 

in a blending process in the pharmaceutical industry. 

3.3 Determination of the optimal blending time 

3.3.1 NIR Quantitative determination 

For quantitative determination, a PLS model developed by NIR spectroscopy 

was used. Although these methods are much more complicated due to the need 

to build a calibration model, this methodology determines the optimal blending 

time. It provides relevant information regarding the API concentration values at 

each point in the mixer along the process. 

The results of this analysis are shown in Figures 5D, E, F, where the API 

concentrations predicted throughout the blending process are represented. The 

time where the concentration of each API in the sampled areas becomes constant 

and does not differ from 5% of the nominal value is considered optimal blending. 

From the graph, the mixture reaches homogeneity at 3.5 min with standard 

deviations of less than 2% between the different sampled areas and until the end 

of the process, which indicates the absence of unmixed components. However, 

caffeine from 6.5 min shows slight variations ranging from 2-2.8%. These values 

are low to be considered a phenomenon of unmixed. Still, it deserves special 

attention considering that this API achieved its homogeneity before 3 min, unlike 

PAR and AAS that reached homogeneity at 3.5 min. This is because caffeine is 

the lowest concentration component and the API with the smallest particle size, 

which translates into greater fluidity and, therefore, facilitates its homogeneity 

during mixing. 

As expected, in the critical sampling areas (E, F, and G), it took the longest to 

reach a constant API concentration due to the low flow generated by the mixer 

in specific areas. This produced a gradual variation of API concentration over 

time until stabilizing at 3.5 min. In the remaining sampling areas, there is more 

significant variability in API concentration, especially in the central areas of the 

blender, where the blending flow is constant. Before 3 minutes, the concentration 

approached their nominal value in these areas, revealing the importance where 

the sample is drawn. 

Also, the blending time was monitored using the methodology used by the 

pharmaceutical industry to validate the process. The results of this analysis are 

plotted in Figures 5A, B, C. The results closely resemble those obtained using 

the developed PLS model. Optimal mixing is achieved after 3.5 minutes, with 

RSD values less than 3%. As determined by spectroscopic techniques, caffeine 

was the API that reached homogeneity before the rest of the components due to 

the physical characteristics.

 

Figure 5. Assessment of homogeneity of the mix quantitatively using NIR spectroscopy and HPLC reference method.
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3.3.2 Qualitative determination  

In this part of the study, different blending processes were monitored by those 

carried out by the pharmaceutical laboratory that sponsored the research. The 

spectra recorded during the blending will be treated with the algorithms selected 

in section 2.6.2, thus establishing the most specific for identifying the optimal 

blending and a statistical guarantee to demonstrate low sensitivity to the own 

oscillations produced by the registry itself. 

The results of this analysis are shown according to the way to record the 

spectrum, segregated sampling records from inside the blender, and continuous 

analysis. 

a) Segregated sampling: The monitoring of the blending process through the 

segregated sampling obtained will obtain 35 spectra (corresponding to 5 records 

in the seven sampled areas) every 0.5 min. The data analysis was performed on 

the average of the five spectra of each area (7 spectra / 0.5 min) for the individual 

spectral representation of each sample. 

The first strategy used to determine the adequate time was the analysis of the 

spectral variability of a group of spectra through the standard deviations (SD) of 

their intensities to each wavelength. This analysis was applied on a block of 7 

spectra continuously throughout the entire process (MBSD) and independently 

on the seven spectra detected in each sampling interval. In both cases, the 

homogeneity of the mixture is detected when the standard deviations of the 

spectra achieve stability represented by an RSD of less than 3%. Figure 6A, B 

shows the results of this evaluation. 

 

Figure 6. Assessment of mixing homogeneity qualitatively by Vis-NIR spectroscopy using MBSD (A), SD from sampling areas (B), DIS-ATS (C), and  

DMBA-TS (D).   

The graphs presented indicate no relationship in the data that can be interpreted 

for the stated objective. In the MBSD graph (Figure 6A), it is not possible to 

observe any reference state where the SD becomes constant, in the same way, if 

the RSD of the spectra is observed in each sampled area (Figure 6B). It is possible 

to appreciate that only one sampling block obtained an RSD value within the 

established limits. However, in the next block, the value returns outside the 

limits. This suggests that the mixture did not reach a stable or homogeneous state 

during the 8 minutes that the process lasted; however, this is very unlikely. 

Hence, the main explanation is that the redundant information, the random 

variation, and the spectral noise of the technique are opaque to the information 

contained in the mixture, which makes qualitative study impossible when 

evaluating spectral variability. 

Continuing with the evaluation of statistical methodologies to analyze the 

spectra, the strategy of Dissimilarity on continuous spectra (DIS), Dissimilarity 

of individual spectra on a target spectrum (DIS-ATS), and the differences 

between the average of 7 spectra in one moving window and a spectrum 

considered as reference (DMBA-TS). The reference spectrum was obtained 

through the average of 10 records made on five commercial samples previously 

ground. The standard deviation of these records for the reference sample was a 

value of 0.005. The optimal blending is reached when the SD of the spectral 

differences falls below this established value. These results from this study are 

shown in Figure 6C, D. 

The results obtained using the different dissimilarity methods show a variable 

behavior. Concerning the DIS strategy, the results obtained were compared with 

those obtained through MBSD, i.e., it was not possible to detect an SD value in 

the spectral differences that indicate homogeneity of mixing. However, by 

including a reference spectrum to obtain the spectral differences, the 

interpretation of the results made it possible to detect SD values that gradually 

approached the values of a reference sample, and therefore are more consistent 

with the results obtained by the quantitative methodology, which implies that 

these methods are more suitable than the previous ones for detection of the 

mixing endpoint. 

The DMBA-TS method showed more uniform changes to DIS-ATS because 

of smoothing due to the calculation of the average in the moving window of 7 

spectra, which makes this method less sensitive to the noise produced by the 

equipment itself. However, in both cases, it was determined that the blending 

time is achieved from min 3.5. It should be noted that some areas sampled at 

minute 3.0 also reached the established SD value; however, it is at minute 3.5 

where all the samples fall within the predetermined limits. 
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Applying these methods showed substantial differences in identifying the 

endpoint in the blending process. On the one hand, MBSD and DIS could not 

accurately detect mixing uniformity because these strategies are not suitable for 

detecting gradual concentration changes and are sensitive to noise problems. On 

the other hand, the methods based on DMBA-TS and DIS-ATS were much more 

effective, with results like the quantitative study. 

The interpretation of the data can be improved by describing with more 

certainty the most relevant causes of spectral variation. A Principal Components 

Analysis (PCA) was performed on the same data set used previously. In this case, 

the variability of the scores, represented by the standard deviations, allows 

detecting the optimal mixing time when reaching SD lower than a reference 

mixture score. For this analysis, MBSD was applied with a seven-point window 

on the scores of the first three principal components, which describe the 

characteristics of the three APIs. Figure 7 shows the results obtained using this 

method. 

 

 

Figure 7. Evaluation of optimal blending time qualitatively by Vis-NIR spectroscopy using scores from the PCA applied on the spectra of the process: A) MBSD 

of scores; B) Spatial distribution of the respective scores to the first two PC; C) Spatial distribution of the respective scores to the first two PCs obtained by applying 

a PCA on the prediction spectra and ten calibration spectra; D) Hotelling's T2 graphic. 

Figure 7A represents the SD values obtained from a seven-point block for the 

first three PCs throughout the entire blending process. The SD of the scores for 

the three PCs achieves stability at different times. Scores from PC1 achieve 

stability just before 2.5 minutes and remain constant until the end of the process. 

Recall that PC1 contains spectral information that mainly explains the 

characteristics of CAF, which, as demonstrated in the quantitative study, 

achieves homogeneity before the other two APIs, explaining the rapid drop in 

SD values for this PC. On the other hand, both PC2 and PC3 scores achieve 

stability in some samples taken at 3.0 min, but the samples were done at 3.5 min 

that the variability of the scores for the three PCs falls within the established 

limits. 

Another method used to monitor and determine the endpoint of the blending 

process using the information provided by the PCA was PC Score Distance 

Analysis (PC-SDA). This is a retrospective method with an important advantage 

over the other methods. It statistically determines the endpoint of the blending 

process with a specific confidence interval, which translates into greater security 

for the determinations. 

The PCA, in this case, incorporated the averages of 5 spectra obtained in each 

sampled area, giving a total of 112 spectra for the entire process, seven spectra 

every 0.5 min for 8.0 min. The determination of the design space is related to the 

acceptable standard deviation limit value for the Euclidean distances of the 

consecutive scores. Although the statistical limit that guarantees homogeneous 

mixing is ambiguous and variable, the author of the strategy considered an SD 

of Euclidean distances of less than 1%, which translates into the creation of 

design space with 95% confidence. Figure 7B, C shows the result of this analysis, 

where the distribution of the scores for the first two PCs is displayed. After a 

particular sampling (red circle), the scores begin to group in the axes center, 

demonstrating lesser variability between the successive scores. As this is a 

retrospective method, the samples grouped in the central areas of the graph are 

considered as the calibration samples, and in their entirety make up the spatial 

area that determines the homogeneity of the mix, in such a way that each sample 

that is inside the area delimited by the black circle is considered as a mixture 

without significant variability. 

Then, in the same way, as before, was carried out a second blending process 

to predict the optimal time with the determined design space. For this, a PCA 

was performed on the set of registered spectra, and ten consecutive spectra were 

included, considered as a reference as described above.  A sampling at minute 

3.0 in zone E, the scores are positioned within the interval established by the 

calibration samples, demonstrating that they meet the good attribute 

homogeneity. 

The T2 Hotelling value can also represent the analysis of the results as a 

function of time (scores). On this occasion, the critical point of the analysis is to 

determine the value of T2 crit, which is related to the level of confidence 

regarding the spectral variability. Therefore, when the scores are below this 

critical value is considered the time necessary to achieve homogeneous mixing. 

Figure 7D illustrates the predicted T2 Hotelling plots for the mixing 

homogenization process. It can be seen that the time when the scores fall below 

the T2 crit value is from the last samplings carried out at min 3.0, which is 

consistent with the results obtained previously.  
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However, despite getting results comparable to the quantitative methodology 

(essentially more reliable), it was not possible to establish a reliability interval 

like that reported by the author of the strategy (95%). In our case, the spectra 

considered as reference allowed determining standard deviations of Euclidean 

distances that represent statistical confidence of 85%. This is because the high 

noise of the instrumental technique is not eliminated using spectral pretreatment 

and interferes with the own signals of each component, which affects the 

sensitivity of the registers increasing the analytical error.  

b) Records inside the blender: As described in section 2.6.1 and to reduce 

the analytical error carried by the sample extractions, a sampling strategy is 

detected that consists of recording spectra from inside the mixer in 7 specific 

areas. The analysis was performed on 112 spectra, where seven spectra were 

recorded at 0.5 min intervals. The results are presented in Figure 8, where the 

statistical analyzes applied to detect homogeneous mixing are shown. The graphs 

give similar results to the segregated sampling, being DIS-ATS, DMBA-TS, and 

the analysis of the SD of continuous scores that allowed obtaining interpretable 

information regarding the uniformity of the mixture, which was recorded at 3.5 

min. However, a PC-SDA study detected an additional advantage over 

segregated sampling. The spectral recording inside the blender allowed to 

decrease the spectral noise between each record, which translated into creating 

design space with a reliability of 90%, granting great statistical support to the 

methodology. The result of this study can be seen in Figure 8D through the 

graphical representation of the T2 Hotelling value with 90% confidence. 

 

Figure 8. Assessment of mixer homogeneity qualitatively by Vis-NIR spectroscopy using (A) DIS-ATS, (B) DMBA-TS, and (C) MBSD scores. 

This increase in the reproducibility of the records results from the decrease in 

the error incorporated by each extraction of samples. Therefore, sampling from 

the inside is a more reliable alternative to segregated sampling for this type of 

analysis. 

c) Continuous analysis: A third strategy included in this work to analyze a 

blending process was through continuous analysis with spectral records from 

outside the mixer. This strategy is close to academia and pharmaceutical 

laboratories' current technological research and process control mechanisms. A 

simple pilot-scale analysis system was set up, described in section 2.6.1 (Figure 

2). The spectral recording was carried out at the same point every 2 seconds 

throughout the entire process (8 minutes). By recording the spectra through the 

blender vessel, there is a risk that spectral signals from the mixing vessel interfere 

with the study. Before statistical analysis, it was necessary to correct these 

interference signals to a certain extent and thus guarantee that the information 

collected corresponds only to the portion of the powder blend analyzed. The 

continuous analysis system was set up to achieve this correction, and ten 

consecutive spectra were recorded at the same point as the empty blender 

(without mixing). This procedure was repeated, recording the spectra 

continuously at the same point every 4 seconds for 1 minute at 30 RPM. 

Subsequently, 50 g of a homogeneous mixture was incorporated into the blender, 

and the spectral recording of the same area of the blender stopped was performed 

again. Finally, to obtain a spectral record of the homogeneous mixture in 

movement, the spectrum was recorded every 4 seconds for one minute at the 

same set point, but this time was simulating the blending process at 30 RPM with 

a previously homogenized mixture. In summary, four sets of spectra obtained at 

the same point of the blender were obtained, which consisted of 10 spectra from 

the stopped empty blender, ten spectra with the loaded blender stopped 15 spectra 

with the loaded blender in movement, and 15 spectra with the empty blender in 

movement too. 

The analysis of the spectral data sets included a spectral pretreatment 

consisting of a baseline correction followed by an SNV and afterward a PCA 

study. Figure 9A shows the result of this analysis. A clear grouping of each data 

set is observed, explained mainly by the first two PCs with 97% of the described 

variance. The distribution of the scores on the x-axis (PC1) shows evident 

segregation of the spectra obtained with the loaded mixer both stopped as in 

movement, grouped at the end of positive values, for the group of spectra 

obtained with an empty blender, which is grouped at the negative contribution 

ends. This leads to suppose that the first PC (79% of explained variance) contains 

the spectral information provided by the blender PMMA container, being sample 

filling the main differentiating factor that describes the grouping of these 

samples. This statement becomes more valid when observing the distribution of 

the scores according to the PC2 (18% of explained variance). In this PC, the 

scores representing the spectra of the stopped blender, both loaded as empty, 

acquired similar values, indicating the presence of physical similarities between 

both groups, alluded to the absence of movement when the spectra were 

recorded. On the other hand, the scores that represent the records of the blender 

in movement (loaded and empty) acquired values that helped differentiate them 

from the stopped records, which suggests that PC2 contains the information that 

involves taking continuous records. 
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 To eliminate the effect produced by the spectral recording in a continuous 

analysis, the spectra of the empty moving blender were averaged, and a 

correction factor was determined as a function of the relative error of the 

intensities of each wavelength for the spectra acquired with the blender loaded 

in movement, as per ours in Equation 3-3 

𝐹𝜆=𝑖
𝐴𝑖
𝑚.𝑣−𝐴𝑖

𝑚.𝑐

𝐴𝑖
𝑚.𝑐      Equation 3-3 

where 𝐴𝑖
𝑚.𝑣 is the absorbance at a particular wavelength of averaged spectra 

obtained from the empty moving blender, and𝐴𝑖
𝑚.𝑐  is the absorbance at the same 

wavelength from the average of spectra obtained from the moving loaded 

blender. 

Each determining factor was multiplied over the intensities at the respective 

wavelength in the spectra acquired to study the blending process. The correction 

factor calculation was done with five different mixtures considered 

homogeneous. Then an average was calculated on the factors obtained at each 

wavelength (𝐹), and a comparative statistical test was applied to the five 

averaged factors. Table 2 shows the statistical analysis results performed on the 

average of the determining factors. It is observed that there are no significant 

differences between the calculated factors, so the correction factor at each 

wavelength was calculated from the average of the factors obtained in the five 

experiments, which served to correct the effect of the mixer container. 

Table 2. Statistical analysis for the average of factors (𝐹), at each wavelength 

obtained from 5 experiments. 

Experiment 𝑭 𝒙-𝑭 

1 -0,1321 -0,00192 

2 -0,1298 -0,00422 

3 -0,1328 -0,00122 

4 -0,1381 0,00408 

5 -0,1373 0,00328 

𝑥 -0,13402 
 

σ 0,003549 

Confidence level (95%) 0,004406945 

Through continuous analysis, 240 spectra were registered throughout the entire 

process from the study. The determined correction factor was applied to each 

spectrum, and they were analyzed through the statistical strategies described to 

detect the optimal blending time. 

The results of this study are summarized in Figures 9B, C, D, the qualitative 

methods evaluated. Only DIS did not provide interpretable results, where the SD 

of the spectral differences between consecutive spectra did not achieve 

stabilization during the duration of the process. However, unlike the other two 

strategies (segregated sampling and records from inside the blender), the MBSD 

strategy (Figure 9C) allowed detecting a time when the standard deviations 

become constant, achieved at approximately 3.57 min. The same result was 

obtained for DIS-ATS analysis, where the SD of the spectral differences against 

a reference spectrum reached values below that established at 3.20 min. SD 

considered the reference for the detection of optimal mixing was obtained from 

the SD of the intensities of the averages of the five spectra analyzed (previously 

corrected). 

It was possible to record a more significant number of spectra per minute for 

discontinuous analyses through continuous analysis. This allowed to include a 

considerable number of spectra (30 spectra) in the mobile window intended to 

calculate standard deviation, which translated into a more remarkable ability of 

the MBSD strategy to detect spectral differences and thus determine the optimal 

time of the mixture in a more specific way, but without deciding statistical 

support. 

Similarly, mixing homogeneity was studied by analyzing the scores from 

applying a PCA on all process spectra (420 spectra). The results of this evaluation 

are shown in Figure 9D. The figure shows the variation of the scores as a function 

of time against a reference score value, which represents the spectrum of a 

homogeneous mixture. After a specific time, the value of the scores did not close 

enough to the reference value, indicating that the mixing did not reach 

homogeneity according to the established criteria. Similarly, when the spectra 

were subjected to an analysis using PC-SDA, the samples got the T2 Hotelling 

crit value for a confidence interval of 70%, which suggests that the analysis of 

the scores is an inadequate strategy for the objective in the studied conditions. 

As the PCA is an algorithm that detects the main variations of a data set, the 

reproducibility of the spectra is an essential factor to extract the information of 

analytical relevance. Although continuous analysis allowed the recording of a 

more significant number of spectra for analysis, the reproducibility of the spectra 

collection was greatly affected due to the inclusion of noisy spectral information 

that could not be removed using the correction factor or with the applied spectral 

pretreatment. 

 

Figure 9. Spatial distribution of the scores about PC1 and PC2 obtained from the PCA applied to the set of spectral data acquired from outside the mixer (A). 

Graphical representation of blending time using: MBSD (B), DIS-ATS (C), and score analysis for a reference (D).
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CONCLUSIONS 

Summarizing the information of different strategies to evaluate the blending 

process, it can be concluded that the PLS model used for the quantitative analysis 

is a reliable methodology with analytical parameters comparable to the HPLC 

reference methodologies but without any sample treatment, which reduces the 

analytical error granted by this stage. Furthermore, unlike qualitative methods, 

these analyzes provide accurate and concentration-based API data throughout the 

blending process. However, they are more laborious, complicated and require 

highly qualified personnel for their preparation, but not for their execution. 

On the other hand, qualitative methods are simple, easy to apply (they do not 

require qualified personnel),and have adequate results to the study objective. 

Regarding the technique for spectral recording, variable results were obtained. 

On the one hand, for the discontinuous analysis, the analytical error incorporated 

in the measurements was evident with segregated sampling, compared to taking 

records from inside the blender, where the analysis by PC-SDA allowed 

detecting the optimal blending time with greater statistical support to the second 

strategy than segregated sampling, being the most used by the pharmaceutical 

industry for analysis. However, discontinuous records make it impossible to 

obtain an appropriate number of data to sustain the strategy to make it more 

accurate and reliable. In this sense, the continuous analysis provided more 

accurate mixing times due to the greater number of recorded spectra per minute 

(30 spec/min), which allowed the process to be monitored using the MBSD 

strategy. However, the reproducibility of the measurements was affected since 

the configuration of the technological system used for the continuous spectral 

recording was not robust enough to guarantee the correct data interpretation 

through the analysis of the scores, where the variability of the process masked 

the chemical and physical characteristics of the mixed components. Although the 

studies carried out continuously did not provide a robust statistical base to 

consider it as a first-choice strategy, slight improvements in the automation of 

the spectral recording would make this option possible, especially considering 

the cost of implementing NIR spectroscopic techniques for online analysis and 

PAT initiative. 
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