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abstract

Characterizing the chemical properties of forage is critical for the production of improved pastures and livestock development. Conventional analysis methods 
are very time- and material-consuming, whereas near-infrared spectroscopy (NIRS) and chemometric analyses allow a fast simultaneous determination of various 
chemical or physical properties without the use of solvents or large sample amounts. The present research involved the development of models based on NIRS 
and partial least squares regression (PLS) to estimate the neutral detergent fiber (NDF), acid detergent fiber (ADF), cellulose, and crude protein (CP) contents in 
Brachiaria spp. forage samples. The models were constructed using spectral data in the range of 800 to 1850 nm. Different preprocessing methods were applied, 
such as standard normal variate and first-/second-derivative transformations. The obtained calibration models were internally cross-validated, displaying validation 
errors similar to those obtained for conventional methods. The predictive abilities of the developed models were evaluated for external set samples. NDF, ADF, 
cellulose, and CP contents were estimated with relative errors of prediction (REPs) of 1.8, 2.6, 4.1, and 8.5%, respectively.  NIRS predictions are a useful and 
profitable tool for fast multi-sample chemical property analysis that is required for the assessment of forage quality. The obtained models are suitable for estimating 
the key chemical characteristics of forage quality. This research contributes a new approach to determining the quality of Brachiaria spp. forage and provides a 
new technological tool for the improvement of this crop. 
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introDuction

Forage is the main source of nutrients for the maintenance and growth of 
livestock.1 The quality of forage is related to its ability to provide livestock with 
required nutrients, being of key importance for meat and dairy producers, with 
crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), 
and total fat contents used as indicators of quality.2

Effective livestock breeding depends on the amounts of CP, NDF, ADF, 
and fat in forage, with the determination of forage quality being essential 
for livestock nutrition.2,3 Traditional forage quality analysis involves time-
consuming and expensive wet-chemical techniques, restricting the number of 
samples that can be processed in a short period of time. Thus, to improve forage 
characterization, faster and more cost-effective methods are required for the 
rapid estimation of quality-related parameters.4

Near-infrared spectroscopy (NIRS) combined with chemometric analysis 
is a useful and powerful technique used for the quality control of various raw 
materials and products in food, agricultural, pharmaceutical, and petrochemical 
industries,5–7 e.g., in the chemical composition determination of  bamboo and 
wood,8,9 soil organic matter analysis,10 wheat grain carbohydrate analysis,11 
chemical property determination of cellulosic pulps,12 and material evaluation 
for bioethanol production.13,14

In contrast to conventional analysis methods, NIRS has the advantages of 
being nondestructive, requiring a small sample size and a short analysis time, 
not using chemical reagents, being environmentally friendly (since no waste 
is generated), and allowing various parameters to be determined at-/on-line, 
offering a low-cost measurement alternative.4,7,15

NIRS has a high potential for the determination of parameters of interest 
in the livestock industry. This industry requires a constant evaluation of forage 
parameters in order for the animals to obtain high-quality food for proper 
development. Therefore, an increasing demand exists for the evaluation of feed 
material quality. Stuth et al.4 describe the use of NIRS for determining the 
protein, fiber, tannin, and mineral content in forage. Additionally, Landau et 
al.16 have shown the capability of NIRS to predict the chemical constituents of 
ruminant feeds, e.g., CP and cell wall composition. Nevertheless, the analysis 
of tropical forage by NIRS has not been extensively reported.17

Forage species of the genus Brachiaria spp. are most widely used in 
tropical regions, mostly in Africa, South America, and Latin America.3,18,19 This 
genus exhibits excellent adaptability to acid soils and temperature changes.3 
Despite its good nutritional characteristics and adaptability, the quality of 
this forage greatly depends on environmental factors and soil fertility, which 
necessitates a constant assessment of nutritional value.

Therefore, the purpose of this study was to use Fourier transform (FT)-NIR 
spectroscopy coupled with partial least squares regression (PLS) to generate 
calibration models and estimate NDF, ADF, cellulose, and CP contents in 
Brachiaria spp. forage samples.

eXperimental

raw material
The Bromatology Laboratory of the Agro-Livestock Research Institute of 

Panamá provided 153 samples of Brachiaria spp. forage, which were air-dried 
until reaching a 10% (w/w) moisture content and were subsequently stored in 
plastic bags.

chemical characterization
Samples were analyzed to determine dry matter (DM), CP, NDF, 

ADF, cellulose, and acid detergent lignin (ADL) contents. DM content was 
determined after drying at 105 °C. The micro-Kjeldahl method (Association of 
Official Analytical Chemists AOAC, Method 976.05) was used to determine 
the nitrogen content, with CP content calculated by multiplying the nitrogen 
content by 6.25 (CP = N × 6. 25).20 NDF, ADF, and ADL contents were 
determined according to the methods of Van Soest et al.21 using an ANKOM200 
fiber analyzer (ANKOM Technology Corporation, NY, USA). Cellulose 
content was calculated as the difference of ADF and ADL. All samples were 
analyzed in triplicates.

ft-nirs analysis
Samples were initially dried at 50 °C for 24 h and conditioned to 50% 

relative air humidity at 25 °C in the spectrophotometer room. Spectra were 
recorded in diffuse reflectance mode at 2-nm intervals from 570 to 1850 nm 
using 32 scans of the InfraXactTM Lab instrument (FOSS, MA, USA). Two 
spectra were recorded and averaged for each sample. The raw reflectance data 
were converted to absorbance, with baseline correction performed by Essential 
FTIR software (Essential FTIR, USA). 

multivariate calibration 
Calibration models were developed on the basis of PLS algorithms, linking 

the spectral data to the values provided by the chemical analysis for each 
property. The spectral data were preprocessed using standard normal variate 
(SNV) and first- and/or second-derivative methods. Prior to PLS analysis, 
the final preprocessed spectral data were mean-centered. All models were 
internally and externally validated. The internal validation was based on full 
cross-validation (CV). A group of 153 samples was analyzed by FT-NIRS, with 
123 samples used to construct the calibration models and 30 samples randomly 
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selected from the whole group for external validation (prediction set). 
Calibration accuracy was expressed by the root mean square error of 

calibration (RMSEC, determined from the residuals of the final calibration), 
the root mean square error of cross-validation (RMSECV, determined from the 
residuals of each cross-validation phase), and the coefficient of determination 
(rc

2, defined as the proportion of variation in the calibration set explained by 
the model). 

For external validation, the standard error of prediction (SEP, determined 
from the residuals of the predictions), bias (average difference between ŷi and 
yi, where ŷi is the property content for a sample i predicted by the calibration 
model; yi is the known property content of an external sample i), root mean 
square error of prediction (RMSEP), and relative error of prediction (REP, 
determined by the percentage ratio between RMSEP and average experimental 
value) were calculated. The predictive abilities of developed calibration 

models were also assessed by calculating the coefficient of determination (rp
2, 

defined as the proportion of variation in the independent prediction set that 
was explained by the calibration). Multivariate analyses were performed using 
Software Pirouette v. 4.0 (Infometrix, USA).

results anD Discussion

The main forage quality parameters were evaluated in 153 samples of 
Brachiaria spp, with the results summarized in Table 1. NDF, FDA, cellulose, 
and CP contents were in the ranges of 62.7–85.7%, 28.5–45.5%, 25.6–42.3%, 
and 5.6–11.1%, respectively. The chemical composition of Brachiaria spp 
forages was thus similar to that reported for silage and forage from alfalfa hay 
and maize.22–24  

                  table 1. Summary of parameters evaluated in Brachiaria spp. forages by conventional methods.

parameter mean minimum maximum sD minimal sD maximal sD

NDF (%) 76.6 62.7 85.7 1.1 0.1 3.3

ADF (%) 38.9 28.5 45.5 0.8 0.1 3

Cellulose (%) 35.7 25.6 42.3 0.6 0.01 2.3

CP (%) 8.4 5.6 11.1 0.3 0.004 1

                  Note: Percentages are presented on DM basis. 

The evaluated chemical properties are indicators of forage quality, with 
their variation range being wide enough for the development of NIRS models.  
For this reason, prediction models based on FT-NIRS and chemometric 
analysis were developed for CP, NDF, ADF, and cellulose. The spectral 
data were transformed to their first and second derivatives (as described in 
the experimental section) to eliminate variations such as baseline shifts and 
noise and to highlight modifications that affect the effective calibration of 
relationships between structural characteristics and NIR spectra (Figure 1). 

figure 1. FT-NIR spectra of pretreated materials. Raw reflectance (R) data 
were converted to absorbance units (1/R) (A) and transformed using the first 
(B) and second derivative (C).

The calibration model was operated using principal component regression 
(PCR) and PLS algorithms and SNV, smooth, first- and second-derivative 
transformations, generating a large number of models for each property 
evaluated. The best models (having a small number of factors, small RMSECV, 
high rc

2, and better predictive ability) were obtained using the PLS algorithm. 
Some outliers were detected based on leverage and studentized residuals and 
were removed. Table 2 summarizes the statistical parameters of calibration 
and cross-validation for the best models. The variance (rc

2) exhibited  by these 
models varied between 0.65 and 0.83. The RMSECV values were comparable 
to those of RMSEC for all calibrations, indicating that the excluded sample was 
well predicted by the corresponding calibration in each cross-validation step and 
that the RMSEC values were not overly optimistic, denoting the roughness of 
the models. The models obtained for NDF and cellulose required preprocessing 
of the spectral data using SNV and first-derivative transformations, affording 
RMSECV values of 1.9 and 1.3% with five factors, respectively. For ADF 
and CP, using PLS models resulted in RMSECVs of 1.5 and 0.8% with four 
and seven factors, respectively. The corresponding spectral data preprocessing 
used SNV and second-derivative transformations in both cases. 

Other studies have also demonstrated the potential of NIRS for predicting 
forage and silage quality. Campo et al.22 evaluated modified partial least 
squares (MPLS) and PLS models for the estimation of NDF, ADF, and CP 
contents in zea mays forage and reported RMSECVs of 1.7, 1.0, and 0.3%, 
respectively. Lundberg et al.24 predicted these properties for legume grass and 
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zea mays silage, obtaining RMSECVs of 1.7 and 1.8% for NDF, 2.2 and 1.4% for ADF, and 0.3 and 0.8% for CP, respectively.  Additionally, Castro et al.25 
developed MPLS models for green herbage forage and silage, obtaining RMSECVs of 2.6 and 2.8% for NDF, 1.2 and 2.1% for ADF, and 0.66 and 1.3% for CP, 
respectively. To the best of our knowledge, no models for estimating cellulose content in silages and forages using NIRS have been developed. Nevertheless, 
estimation of this property by NIRS has been reported for wood samples. For example, Hodge and Woodbridge26 developed NIRS models for the cellulose content 
of different pine species with an RMSECV of 1.1%.  

table 2. Summary of calibrations for the developed FT-NIRS models with corresponding statistical parameter values for the best models.

property nDf (%) aDf (%) cellulose (%) cp (%)

transformation of data 1st der. (15), SNV 2nd der. (23), SNV 1st der. (21), SNV 2nd der. (23), SNV

range 63–86 28–45 25–42 5.6–11.3

spectral region (nm) 800–1850 800–1850 800–1850 628–792,1110–1220, 1314–1734‚ 
1846–1848

number of pls factors 5 4 5 7

number of outliers 1 2 1 2

n 122 121 122 121

rc
2 0.87 0.88 0.90 0.65

rmsec 1.71 1.36 1.26 0.71

rv
2 0.84 0.86 0.88 0.56

rmsecV 1.85 1.47 1.34 0.78

Note: The values in parentheses correspond to the number of points used in the data transformation.

                 table 3. Summary of predictions (external validation).

property range
external validation

n rp
2 rmsep sep rep bias rpD

NDF 68–83 30 0.86 1.4 1.4 1.8 0.05 3.4

ADF 30–44 29 0.90 1.0 1.0 2.6 0.07 5

Cellulose 29–42 30 0.73 1.4 1.4 4.1 0.42 2.6

CP 6–10 30 0.53 0.71 0.72 8.5 0.1 3.5

The use of NIRS to estimate tropical forage quality has been less studied. 
Baloyi et al.17 reported one of the few studies on the estimation of the chemical 
composition of tropical forage using this technique. The authors performed 
NIRS modeling for NDF, ADF, and CP, obtaining RMSECV values of 1.7, 
1.7, and 1.2 g/kg, respectively, for Vigna unguiculata, Desmodium uncinatum, 
stylosanthes guianensis, and other forage. 

In general, calibration models similar to or better than those reported 
were developed in the present study to predict CP, NDF, ADF, and cellulose 
contents in samples of Brachiaria spp. forage from Panamá. 

The calibration models were used to predict the properties of 30 
independent samples in an external validation set. External validation models 
provided an estimate of how well a regression model would perform if it were 
applied to unknown samples. The validation set covered the whole range of 
property values, with the results of prediction assays summarized in Table 3 
and Figure 2. The NDF, FDA, cellulose, and CP contents were predicted with 
RMSEPs of 1.4, 1.0, 1.4, and 0.7%, respectively. The RMSEP values were 
similar or slightly less than the corresponding RMSECVs, ratifying the good 
predictive ability of these models in internal validation.  Although the RMSEPs 
were greater than the average standard deviation obtained for wet-chemical 
analysis, they were still in the range of standard deviations commonly obtained 
in the analysis of these forage chemical properties. This indicated that the 
above models are appropriate to estimate these parameters, which are of key 
importance to evaluate forage quality. Moreover, NDF, FDA, cellulose, and 
CP contents were predicted with REPs of 1.8, 2.6, 4.1, and 8.5%, respectively. 
According to Olivieri and Escandar,27 REP values of less than 5% are 
considered good, with those between 5 and 10% considered reasonable. This 
shows the quality of the developed prediction models. Even though, a moderate 
accuracy for CP content predictions can be expected, the results indicate the 
existence of a difference between the experimental and estimated values for CP 
content (rp

2 = 0.53), possibly due to the narrow range of sample concentrations 
used in the calibration procedure. 

Additionally, the bias and relative performance determinant (RPD) 

parameters were evaluated. As shown in Figure 2, the calculated bias was low, 
indicating accurate prediction and explaining the similar SEP and RMSEP 
values. According to Saeys et al.,28 the predictive ability for RPD can be 
considered successful, since values higher than 2.5 were obtained.

On the other hand, the regression vectors of PLS models were analyzed 
to determine the functional groups responsible for the relationships between 
each property and sample spectra. These vectors are shown in Figure 3. 
Assigning molecular features to NIR spectra is difficult due to band overlap, 
but some tentative assignments can still be made.7, 29–32 In the NDF model, 
the most important bands were observed at 1168 and 1216 nm (tentatively 
indicative of the second C–H overtone), 1436 nm (first O–H overtone and/or 
C–H combination), 1472 nm (first O–H overtone), and 1608, 1680, and 1768 
nm (C–H stretch first overtone). These bands were also most important for 
the development of the cellulose model. In the ADF model, the corresponding 
bands were observed at 1450 nm (first O–H overtone), 1504 and 1590 nm 
(O–H stretch first overtone), and 1696 nm (C–H stretch first overtone). For 
the CP model, the influential bands were observed at 728 nm (associated with 
red color in the visible region); 1188 nm (second C–H overtone), 1366 nm 
(C–H combination), 1478 nm (N–H stretch first overtone), and 1666 and 1696 
nm (C–H stretch first overtone). These assignments are consistent with the 
chemical characteristics of lignocellulosic materials.

According to the obtained results, NIRS-PLS models can satisfactorily 
estimate the NDF, ADF, and cellulose contents in Brachiaria spp. forage. The 
numerous advantages offered by NIRS make it a promising analysis technique. 
Improvements in instrumentation and the advance of chemometric software 
allow simultaneous quick and easy analyses of a variety of parameters. 
Moreover, sample preparation is not as essential for NIRS as it is for 
conventional analyses techniques. Nonetheless, an extensive knowledge of 
chemometrics is required.
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figure 2. Correlations between observed and PLS-predicted concentrations for 30 samples evaluated as a validation data set. 

conclusion

The obtained calibration models showed validation errors similar to 
those obtained for conventional methods, proving the suitability of NIRS for 
predicting the chemical properties of Brachiaria spp. forage. This technique 
can be an attractive alternative for replacing the time-consuming reference 
methods and decreasing the cost of chemicals used, being an environmentally 
friendly and profitable tool for the rapid analysis of a large number of samples 
required in the assessment of the nutritional quality of tropical forages, such as 
Brachiaria spp.
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figure 3. Regression vectors of PLS models used to estimate NDF (A), cellulose (B), ADF (C), and 
CP (D) content in Brachiaria spp. forages. 
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