JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 61 No 1 (2016): Journal of the Chilean Chemical Society
Original Research Papers

PREPARATION OF BORIC ACID MODIFIED EXPANDABLE GRAPHITE AND ITS INFLUENCE ON POLYETHYLENE COMBUSTION CHARACTERISTICS

Hongmei Zhao
Llege of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002 Department of VIP, Affiliated Hospital of Hebei University, Baoding, Hebei 071000
Xiuyan Pang
Llege of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002
Ruinian Lin
Llege of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002
Published December 10, 2015
Keywords
  • Modified expandable graphite,
  • Boric acid,
  • Characteristics,
  • Dilatability,
  • Flame retardancy,
  • Synergistic efficiency
  • ...More
    Less
How to Cite
Zhao, H., Pang, X., & Lin, R. (2015). PREPARATION OF BORIC ACID MODIFIED EXPANDABLE GRAPHITE AND ITS INFLUENCE ON POLYETHYLENE COMBUSTION CHARACTERISTICS. Journal of the Chilean Chemical Society, 61(1). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/40

Abstract

A boric acid modified expandable graphite (EGB) was prepared through oxidizing-intercalating reaction of natural graphite, using H3SO4 and boric acid (H3BO3) as intercalators simultaneously. The dilatability of the intercalated products were characterized with expansion volume and initial expansion temperature. Scanning electron microscope, X-ray diffraction spectroscopy, energy dispersive spectroscopy and Fourier transform infrared spectroscopy were employed to detect its layer structure, main element relative contents and function group. At the same time, its influence on combustion characteristics and thermal stability for linear low density polyethylene (LLDPE) were investigated in limiting oxygen index (LOI) tests, vertical burning tests and thermal gravimetric/differential thermal gravimetric analyses. Comparing with the normal expandable graphite (EG, intercalated by single H2SO4), EGB exhibited high dilatability, thermal stability and flame retardancy for LLDPE. It had been testified by combustion tests that the addition of 30 wt % EGB to LLDPE improved the limiting oxygen index (LOI) from 17.6% to 30.2%, and the vertical burning level of UL-94 standard reached V-0 level. Whereas, the LOI of the same amount referenced EG was only 25.1%, the UL- 94 level only reached V-1. Moreover, the synergistic effect between EGB and ammonium polyphosphate (II) (APP) improved the LOI of 70LLDPE/10APP/20EGB composite to 33.0%, and the UL-94 level to V-0. The synergistic efficiency was attributed to the formation of continuous and compact residual char.

References

  1. -J.E. Fischer, T.E. Thompson, Physics Today 31, 36, (2008).
  2. -G.Q. Liu, M. Yan, New Carbon Mater. 17, 13, (2002).
  3. -Z.D. Sun, Y.H. Ma, Y. Xu, X.L. Chen, M. Chen, J. Yu, S.C. Hu, Z.B. Zhang, Polym. Eng. Sci. 54, 1162, (2014).
  4. -C.Q. Wang, F.Y. Ge, J. Sun, Z.S. Cai, Appl. Polym. Sci. 130, 916, (2013).
  5. -M. Thirumal, D. Khastgir, N.K. Singha, B.S. Manjunath, Y.P. Naik, Appl. Polym. Sci. 110, 2586, (2008).
  6. -C.F. Kuan, K.C. Tsai, C.H. Chen, H.C. Kuan, T.Y. Liu, C.L. Chiang, Polym. Composite. 33, 872, (2012).
  7. -H. Shioyama, R. Fujii, Carbon, 25, 771, (1987).
  8. -H. Ren, Y.F. Kang, Q.J. Jiao, Q.Z. Cui, New Carbon Mater. 21, 315, (2006).
  9. -M.I. Saidaminov, N.V. Maksimova, P.V. Zatonskih, A.D. Komarov, M.A. Lutfullin, N.E. Sorokina, V.V. Avdeev, Carbon, 59, 337, (2013).
  10. -S. Duquesne, M.L. Bras, S. Bourbigot, R. Delobel, H. Vezin, G. Camino, B. Eling, C. Lindsay, T. Roels, Fire Mater. 27, 103, (2003).
  11. -Z.H. Zheng, J.T. Yan, H.M. Sun, Z.Q. Cheng, W.J. Li, H.Y. Wang, X.J. Cui, Polymer Int. 63, 84, (2014).
  12. -X.L Chen, H. Wu, Z. Luo, B. Yang, S.Y. Guo, J. Yu, Polym. Eng. Sci. 47, 1756, (2007).
  13. -Z.D. Sun, Y.H. Ma, Y. Xu, X.L. Chen, M. Chen, J. Yu, S.C. Hu, Z.B. Zhang, Polym. Eng. Sci. 54, 1162, (2014).
  14. -L.L. Ge, H.J. Duan, X.G. Zhang, C. Chen, J.H. Tang, Z.M.J. Li, Appl. Polym. Sci. 126, 1337, (2012).
  15. -S.G. Hong, S.Y Chang, Fire Mater. 36, 277, (2012).
  16. -Y.B. Lu, Y.J. Zhang, W.J. Xu, J. Macromol. Sci. 50, 1864, (2011).
  17. -X.Y. Pang, Y. Tian, M. Q. Weng, Polym. Composite. 36, 1407, (2015).
  18. -M.K. Song, Master’s thesis, Hebei Univ. (2013).
  19. -S. Duquesne, M.L. Bras, S. Bourbigot, R. Delobel, H. Vezin, G. Camino, B. Eling, C. Lindsay T. Roels, Fire Mater. 27, 103, (2003).
  20. -L. Chen, Y. Z. Wang, Polym. Adv. Tech. 21, 1, (2010).
  21. -F.F. Feng, L.J. Qian, Polym. Composite. 35, 301, (2014).
  22. -Y. Zhang, X.L. Chen, Z.P. Fang, Appl. Polym. Sci. 128, 2424, (2013).
  23. -H. Seefeldt, U. Braun, M.H. Wagner, Macromol. Chem. Phys. 213, 2370, (2012).
  24. -L. P. Gao, G.Y. Zheng, Y.H. Zhou, L.H. Hu, G.D. Feng, Y.L. Xie, Ind. Crop. Prod. 50, 638, (2013).
  25. -L.C. Du, Y.C. Zhang, X.Y Yuan, J.Y. Chen, Polym-Plast Technol. 48, 1002, (2009).
  26. -D.M. Xu, F. Ding, J. W. Hao, J.X. Du, Chem. J. Chinese Univ. 34, 2674, (2013).
  27. -O.N. Shornikova, A.V. Dunaev, N.V. Maksimova, V.V. Avdeev, J. Phys. Chem. Solids, 67, 1193, (2006).
  28. -Y.J. Lee, H.J. Joo, L.R. Radovic, Carbon, 41, 2591, (2003).
  29. -M.I. Saidaminova, N.V. Maksimovaa, V.V. Avdeeva, J. Mater. Res., 27, 1054, (2012).
  30. -M.I. Saidaminov, N.V. Maksimova, N.G. Kuznetsov, N.E. Sorokina, V.V. Avdeev, Inorg. Mater., 48, 258, (2012).
  31. -T. Hirata, K.E. Werner, J. Appl. Polym. Sci. 33, 1533, (1987).
  32. -N. Selvakumar, A. Azhagurajan, T.S. Natarajan, M.M.A. Khadir, J. Appl. Polym. Sci. 126, 614, (2012).
  33. -A.D. Chirico, G. Audisio, F. Provasoli, M. Armanini1, R. Franzese, Makromol. Chem. 74, 343, (1993).
  34. -S. Ullah, F. Ahmad, P.S.M. Megat Yusoff, J. Appl. Polym. Sci. 128, 2983, (2013).
  35. -X.M. Hu, D.M. Wang, J. Appl. Polym. Sci. 129, 238, (2013).
  36. -D.M. Xu, J.W. Hao, G.S. Liu, S.M. Xie, Acta Polym. Sin. 7, 832, (2013).
  37. -Z.D. Han, D.W. Zhang, L.M. Dong, X.Y. Zhang, Chinese J. Inorg. Chem. 23, 286, (2007).
  38. -J. Li, S.P. Xia, S.Y. Gao, Spectrochim. Acta A, 51, 519, (1995).
  39. -C.F. Zuo, Master thesis, Shanxi Normal University, (2005).
  40. -L.B. Ebert, Annu. Rev. Mater. Sci. 6, 181, (1976).
  41. -H. Zabel, S.A. Solin (Eds). Springer Series in Materials Science, 14, 355, (1990).
  42. -H. Selig, L.B. Ebert, Adv. Inorg. Chem. Radiochem. 23, 281, (1980).
  43. -B. Schartel, A. Wei, F. Mohr, M. Kleemeier, A. Hartwig, U. Braun, J. Appl. Polym. Sci. 118, 1134, (2010).
  44. -C.H. Chen, W.H. Yen, H.C. Kuan, C.F. Kuan, C.L. Chiang, Polym. Composite. 31, 18, (2010).
  45. -H.F. Zhu, Q.L. Zhu, J. Li, K. Tao, L.X. Xue, Q. Yan, Polym. Degrad. Stabil. 96, 183, (2011).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP